
Adiar
Binary Decision Diagrams in External Memory

Steffan Christ Sølvsten (�) , Jaco van de Pol ,
Anna Blume Jakobsen, and Mathias Weller Berg Thomasen

Aarhus University, Denmark {soelvsten,jaco}@cs.au.dk

Abstract. We follow up on the idea of Lars Arge to rephrase the Reduce
and Apply operations of Binary Decision Diagrams (BDDs) as iterative
I/O-efficient algorithms. We identify multiple avenues to simplify and
improve the performance of his proposed algorithms. Furthermore, we
extend the technique to other common BDD operations, many of which
are not derivable using Apply operations alone. We provide asymptotic
improvements to the few procedures that can be derived using Apply.
Our work has culminated in a BDD package named Adiar that is able
to efficiently manipulate BDDs that outgrow main memory. This makes
Adiar surpass the limits of conventional BDD packages that use recur-
sive depth-first algorithms. It is able to do so while still achieving a sat-
isfactory performance compared to other BDD packages: Adiar, in parts
using the disk, is on instances larger than 9.5 GiB only 1.47 to 3.69 times
slower compared to CUDD and Sylvan, exclusively using main memory.
Yet, Adiar is able to obtain this performance at a fraction of the main
memory needed by conventional BDD packages to function.

Keywords: Time-forward Processing · External Memory Algorithms ·
Binary Decision Diagrams

1 Introduction

A Binary Decision Diagram (BDD) provides a canonical and concise representa-
tion of a boolean function as an acyclic rooted graph. This turns manipulation
of boolean functions into manipulation of graphs [10,11].

Their ability to compress the representation of a boolean function has made
them widely used within the field of verification. BDDs have especially found use
in model checking, since they can efficiently represent both the set of states and
the state-transition function [11]. Examples are the symbolic model checkers
NuSMV [14, 15], MCK [17], LTSmin [19], and MCMAS [24] and the recently
envisioned symbolic model checking algorithms for CTL* in [3] and for CTLK
in [18]. Hence, continuous research effort is devoted to improve the performance
of this data structure. For example, despite the fact that BDDs were initially
envisioned back in 1986, BDD manipulation was first parallelised in 2014 by
Velev and Gao [35] for the GPU and in 2016 by Van Dijk and Van de Pol [16]
for multi-core processors [12].

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 295–313, 2022.
https://doi.org/10.1007/978-3-030-99527-0_16

http://orcid.org/0000-0003-0963-6569
http://orcid.org/0000-0003-4305-0625
mailto:soelvsten@cs.au.dk
mailto:jaco@cs.au.dk
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_16&domain=pdf

The most widely used implementations of decision diagrams make use of
recursive depth-first algorithms and a unique node table [16, 23, 34]. Lookup of
nodes in this table and following pointers in the data structure during recursion
both pause the entire computation while missing data is fetched [21,26]. For large
enough instances, data has to reside on disk and the resulting I/O-operations
that ensue become the bottle-neck. So in practice, the limit of the computer’s
main memory becomes the upper limit on the size of the BDDs.

Related Work. Prior work has been done to overcome the I/Os spent while
computing on BDDs. David Long [25] achieved a performance increase of a fac-
tor of two by blocking all nodes in the unique node table based on their time
of creation, i.e. with a depth-first blocking. But, in [6] this was shown to only
improve the worst-case behaviour by a constant. Ochi, Yasuoka, and Yajima [28]
designed in 1993 breadth-first BDD algorithms that exploit a levelwise locality
on disk. Their technique was improved by Ashar and Cheong [8] in 1994 and
by Sanghavi et al. [31] in 1996. The fruits of their labour was the BDD library
CAL capable of manipulating BDDs larger than available main memory. Kun-
kle, Slavici and Cooperman [22] extended in 2010 the breadth-first approach to
distributed BDD manipulation.

The breadth-first algorithms in [8, 28, 31] are not optimal in the I/O-model,
since they still use a single hash table for each level. This works well in practice,
as long as a single level of the BDD can fit into main memory. If not, they still
exhibit the same worst-case I/O behaviour as other algorithms [6].

In 1995, Arge [5, 6] proposed optimal I/O algorithms for the basic BDD
operations Apply and Reduce. To this end, he dropped all use of hash tables.
Instead, he exploited a total and topological ordering of all nodes within the
graph. This is used to store all recursion requests in priority queues, so they
get synchronized with the iteration through the sorted input stream of nodes.
Martin Šmérek implemented these algorithms in 2009 as they were described,
but the performance was disappointing, since the intermediate unreduced BDD
grew too large to handle in practice [personal communication, Sep 2021].

Contributions. Our work directly follows up on the theoretical contributions
of Arge in [5, 6]. We simplified and improved on his I/O-optimal Apply and
Reduce algorithms. In particular, we modified and pruned the intermediate rep-
resentation, to prevent data duplication and to save on the number of sorting
operations. We also provide I/O-efficient versions of several other standard BDD
operations, where we obtain asymptotic improvements for the operations that
are derivable from Apply.

Our proposed algorithms and data structures have been implemented to cre-
ate a new easy-to-use and open-source BDD package, named Adiar. Our experi-
mental evaluation shows that Adiar is able to manipulate BDDs larger than the
given main memory available, with only an acceptable slowdown compared to a
conventional BDD library running exclusively in main memory.

296 S. C. Sølvsten et al.

1.1 Overview

The rest of the paper is organised as follows. Section 2 covers preliminaries on
the I/O-model and Binary Decision Diagrams. We present our algorithms for
I/O-efficient BDD manipulation in Section 3. Section 4 provides an overview
of the resulting BDD package, Adiar, and Section 5 contains an experimental
evaluation of it. Our conclusions and future work are in Section 6.

2 Preliminaries

2.1 The I/O-Model

The I/O-model [1] allows one to reason about the number of data transfers be-
tween two levels of the memory hierarchy, while abstracting away from technical
details of the hardware, to make a theoretical analysis manageable.

An I/O-algorithm takes inputs of size N , residing on the higher level of
the two, i.e. in external storage (e.g. on a disk). The algorithm can only do
computations on data that reside on the lower level, i.e. in internal storage
(e.g. main memory). This internal storage can only hold a smaller and finite
number of M elements. Data is transferred between these two levels in blocks
of B consecutive elements [1]. Here, B is a constant size not only encapsulating
the page size or the size of a cache-line but more generally how expensive it is
to transfer information between the two levels. The cost of an algorithm is the
number of data transfers, i.e. the number of I/O-operations, or just I/Os, it uses.

For all realistic values of N , M , and B we have that N/B < sort(N) � N ,
where sort(N) , N/B · logM/B(N/B) [1, 7] is the sorting lower bound, i.e. it
takes Ω(sort(N)) I/Os in the worst-case to sort a list of N elements [1]. With
an M/B-way merge sort algorithm, one can obtain an optimal O(sort(N)) I/O
sorting algorithm [1], and with the addition of buffers to lazily update a tree
structure, one can obtain an I/O-efficient priority queue capable of inserting
and extracting N elements in O(sort(N)) I/Os [4].

TPIE. The TPIE library [36] provides an implementation of I/O-efficient al-
gorithms and data structures such that the use of B-sized buffers is completely
transparent to the programmer. Elements can be stored in files that act like
lists. One can push new elements to the end of a file and read the next ele-
ments from the file in either direction, provided has next returns true. One can
also peek the next element without moving the read head. TPIE provides an
optimal O(sort(N)) external memory merge sort algorithm for its files. Further-
more, it provides an implementation of the I/O-efficient priority queue of [30] as
developed in [29], which supports the push, top and pop operations.

2.2 Binary Decision Diagrams

A Binary Decision Diagram (BDD) [10], as depicted in Fig. 1, is a rooted directed
acyclic graph (DAG) that concisely represents a boolean function Bn → B,

Adiar: Binary Decision Diagrams in External Memory 297

x2

⊥ >
(a) x2

x0

x1

⊥ >
(b) x0 ∧ x1

x0

x1 x1

⊥ >
(c) x0 ⊕ x1

x1

x2

⊥ >
(d) x1 ∨ x2

Fig. 1: Examples of Reduced Ordered Binary Decision Diagrams. Leaves are
drawn as boxes with the boolean value and internal nodes as circles with the
decision variable. Low edges are drawn dashed while high edges are solid.

where B = {>,⊥}. The leaves contain the boolean values ⊥ and > that define
the output of the function. Each internal node contains the label i of the input
variable xi it represents, together with two outgoing arcs: a low arc for when
xi = ⊥ and a high arc for when xi = >. We only consider Ordered Binary
Decision Diagrams (OBDD), where each unique label may only occur once and
the labels must occur in sorted order on all paths. The set of all nodes with label
j is said to belong to the jth level in the DAG.

If one exhaustively (1) skips all nodes with identical children and (2) removes
any duplicate nodes, then one obtains the Reduced Ordered Binary Decision Di-
agram (ROBDD) of the given OBDD. If the variable order is fixed, this reduced
OBDD is a unique canonical form of the function it represents [10].

The two primary algorithms for BDD manipulation are called Apply and
Reduce. The Apply computes the OBDD h = f�g where f and g are OBDDs and
� is a function B×B→ B. This is essentially done by recursively computing the
product construction of the two BDDs f and g and applying � when recursing
to pairs of leaves. The Reduce applies the two reduction rules on an OBDD
bottom-up to obtain the corresponding ROBDD [10].

Common implementations of BDDs use recursive depth-first procedures that
traverse the BDD and the unique nodes are managed through a hash table [9,
16,20,23,34]. The latter allows one to directly incorporate the Reduce algorithm
of [10] within each node lookup [9, 27]. They also use a memoisation table to
minimise the number of duplicate computations [16, 23, 34]. If the size Nf and
Ng of two BDDs are considerably larger than the memory M available, each
recursion request of the Apply algorithm will in the worst case result in an I/O,
caused by looking up a node within the memoisation and following the low and
high arcs [6,21]. Since there are up to Nf ·Ng recursion requests, this results in
up to O(Nf · Ng) I/Os in the worst case. The Reduce operation transparently
built into the unique node table with a find-or-insert function can also cause an
I/O for each lookup within this table [21]. This adds yet another O(N) I/Os,
where N is the number of nodes in the unreduced BDD.

Lars Arge provided in [5,6] a description of an Apply algorithm that is capable
of only using O(sort(Nf · Ng)) I/Os and a Reduce that uses O(sort(N)) I/Os

298 S. C. Sølvsten et al.

(see [6] for a detailed description). He also proved this to be optimal for both
algorithms, assuming a levelwise ordering of nodes on disk [6]. Our algorithms,
implemented in Adiar, differ from Arge’s in subtle non-trivial ways. We will not
elaborate further on his original proposal, since our algorithms are simpler and
better at conveying the time-forward processing technique he used. Instead, we
will mention where our Reduce and Apply algorithms differ from his.

3 BDD Manipulation by Time-forward Processing

Our algorithms exploit the total and topological ordering of the internal nodes
in the BDD depicted in (1) below, where parents precede their children. It is
topological by ordering a node by its label, i : N, and total by secondly ordering
on a node’s identifier, id : N. This identifier only needs to be unique on each
level as nodes are still uniquely identifiable by the combination of their label and
identifier.

(i1, id1) < (i2, id2) ≡ i1 < i2 ∨ (i1 = i2 ∧ id1 < id2) (1)

We write the unique identifier (i, id) : N× N for a node as xi,id .
BDD nodes do not contain an explicit pointer to their children but instead

the children’s unique identifier. Following the same notion, leaf values are stored
directly in the leaf’s parents. This makes a node a triple (uid , low , high) where
uid : N×N is its unique identifier and low and high : (N×N)+B are its children.
The ordering in (1) is lifted to compare the uids of two nodes, and so a BDD is
represented by a file with BDD nodes in sorted order. For example, the BDDs
in Fig. 1 would be represented as the lists depicted in Fig. 2.

The Apply algorithm in [6] produces an unreduced OBDD, which is turned
into an ROBDD with Reduce. The original algorithms of Arge solely work on a
node-based representation. Arge briefly notes that with an arc-based represen-
tation, the Apply algorithm is able to output its arcs in the order needed by the
following Reduce, and vice versa. Here, an arc is a triple (source, is high, target)
(written as source is high−−−→ target) where source : N × N, is high : B, and tar-
get : (N×N)+B, i.e. source and target contain the level and identifier of internal
nodes. We have further pursued this idea of an arc-based representation and can
conclude that the algorithms indeed become simpler and more efficient with an
arc-based output from Apply. On the other hand, we see no such benefit over
the more compact node-based representation in the case of Reduce. Hence as
is depicted in Fig. 3, our algorithms work in tandem by cycling between the
node-based and arc-based representation.

1a: [(x2,0,⊥,>)]
1b: [(x0,0,⊥, x1,0) , (x1,0,⊥,>)]
1c: [(x0,0, x1,0, x1,1) , (x1,0,⊥,>) , (x1,1,>,⊥)]
1d: [(x1,0, x2,0,>) , (x2,0,⊥,>)]

Fig. 2: In-order representation of BDDs of Fig. 1

Adiar: Binary Decision Diagrams in External Memory 299

Apply Reduce
f nodes

g nodes

internal arcs

f � g arcs

leaf arcs

f � g nodes

Fig. 3: The Apply–Reduce pipeline of our proposed algorithms

x0,0

(x2,0, x0,0)

x1,0

(x2,0, x1,0)

x2,0

(x2,0,⊥)
x2,1

(x2,0,>)

⊥ >
(a) Semi-transposed graph. (pairs indicate
nodes in Fig. 1a and 1b, respectively)

internal arcs leaf arcs
[x0,0

>−→ x1,0 , [x2,0
⊥−→ > ,

x1,0
⊥−→ x2,0 , x2,0

>−→ ⊥ ,
x0,0

⊥−→ x2,0 , x2,1
⊥−→ > ,

x1,0
>−→ x2,1] x2,1

>−→ >]
(b) In-order arc-based representation.

Fig. 4: Unreduced output of Apply when computing x2 ⇒ (x0 ∧ x1)

Notice that our Apply outputs two files containing arcs: arcs to internal
nodes (blue) and arcs to leaves (red). Internal arcs are output at the time their
targets are processed, and since nodes are processed in ascending order, internal
arcs end up being sorted with respect to the unique identifier of their target.
This groups all in-going arcs to the same node together and effectively reverses
internal arcs. Arcs to leaves, on the other hand, are output when their source is
processed, which groups all out-going arcs to leaves together. These two outputs
of Apply represent a semi-transposed graph, which is exactly of the form needed
by the following Reduce. For example, the Apply on the node-based ROBDDs in
Fig. 1a and 1b with logical implication as the operator will yield the arc-based
unreduced OBDD depicted in Fig. 4.

For simplicity, we will ignore any cases of leaf-only BDDs in our presentation
of the algorithms. They are easily extended to also deal with those cases.

3.1 Apply

Our Apply algorithm works by a single top-down sweep through the input DAGs.
Internal arcs are reversed due to this top-down nature, since an arc between two
internal nodes can first be resolved and output at the time of the arc’s target.
These arcs are placed in the file Finternal . Arcs from nodes to leaves are placed
in the file Fleaf .

The algorithm itself essentially works like the standard Apply algorithm.
Given a recursion request for a pair of input nodes vf from f and vg from g,
a single node is created with label min(vf .uid .label , vg.uid .label) and recursion
requests rlow and rhigh are created for its two children. If the label of vf .uid and

300 S. C. Sølvsten et al.

1 Apply(f , g , �)
2 Finternal ← [] ; Fleaf ← [] ; Qapp:1 ← ∅ ; Qapp:2 ← ∅
3 vf ← f . next () ; vg ← g . next () ; id ← 0 ; l a b e l ← undef ined
4
5 /∗ I n s e r t r e q u e s t f o r roo t (vf , vg) ∗/
6 Qapp:1 . push (NIL undefined−−−−−→ (vf .uid , vg.uid))
7
8 /∗ Process r e q u e s t s in t o p o l o g i c a l order ∗/
9 while Qapp:1 6= ∅ ∨Qapp:2 6= ∅ do

10 (s is high−−−→ (tf , tg) , low , high) ← TopOf(Qapp:1 , Qapp:2)
11
12 tseek ← i f low , high = NIL then min (tf ,tg) else max(tf ,tg)
13 while vf . uid < tseek ∧ f . has next () do vf ← f . next () od
14 while vg . uid < tseek ∧ g . has next () do vg ← g . next () od
15
16 i f low = NIL ∧ high = NIL ∧ tf 6∈ {⊥,>} ∧ tg 6∈ {⊥,>}
17 ∧ tf . label = tg . label ∧ tf . id 6= tg . id
18 then /∗ Forward in format ion o f min(tf , tg) to max(tf , tg) ∗/
19 v ← i f tseek = vf then vf else vg

20 while Qapp:1 . top () matches −→ (tf , tg) do
21 (s is high−−−→ (tf , tg)) ← Qapp:1 . pop ()
22 Qapp:2 . push (s is high−−−→ (tf , tg) , v . low , v . high)
23 od
24 else /∗ Process r e q u e s t (tf , tg) ∗/
25 id ← i f l a b e l 6= tseek . label then 0 else id+1
26 l a b e l ← tseek . label
27
28 /∗ Forward or output out−going arcs ∗/
29 rlow , rhigh ← RequestsFor ((tf , tg) , vf , vg , low , high , �)
30 (i f rlow ∈ {⊥,>} then Fleaf else Qapp:1) . push (xlabel,id

⊥−→ rlow)
31 (i f rhigh ∈ {⊥,>} then Fleaf else Qapp:1) . push (xlabel,id

>−→ rhigh)
32
33 /∗ Output in−going arcs ∗/
34 while Qapp:1 6= ∅ ∧ Qapp:1 . top () matches (−→ (tf , tg)) do
35 (s is high−−−→ (tf , tg)) ← Qapp:1 . pop ()
36 i f s 6= NIL then Finternal . push (s is high−−−→ xlabel,id)
37 od
38 while Qapp:1 6= ∅ ∧ Qapp:2 . top () matches (−→ (tf , tg) , ,) do
39 (s is high−−−→ (tf , tg) , ,) ← Qapp:2 . pop ()
40 i f s 6= NIL then Finternal . push (s is high−−−→ xlabel,id)
41 od
42 od
43 return Finternal , Fleaf

Fig. 5: The Apply algorithm

Adiar: Binary Decision Diagrams in External Memory 301

vg.uid are equal, then rlow = (vf .low , vg.low) and rhigh = (vf .high, vg.high).
Otherwise, rlow , resp. rhigh , contains the uid of the low child, resp. the high
child, of min(vf , vg), whereas max(vf .uid , vg.uid) is kept as is.

The pseudocode for the Apply procedure is shown in Fig. 5, where the Re-
questsFor function computes rlow and rhigh for the pair of nodes (tf , tg). The
goal of the rest of the algorithm is to obtain the information that RequestsFor
needs in an I/O-efficient way. To this end, the two priority queues Qapp:1 and
Qapp:2 are used to synchronise recursion requests for a pair of nodes (tf , tg) with
the sequential order of reading nodes in f and g. Qapp:1 has elements of the
form (s is high−−−→ (tf , tg)) and Qapp:2 has elements (s is high−−−→ (tf , tg), low , high). The
boolean is high and the unique identifer s, being the request’s origin, are used
on lines 33 – 41, to output all ingoing arcs when the request is resolved.

Elements in Qapp:1 are sorted in ascending order by min(tf , tg), i.e. the node
encountered first from f and g. Requests to the same (tf , tg) are grouped together
by secondarily sorting the tuple lexicographically. Qapp:2 is sorted in ascending
order by max(tf , tg), i.e. the second of the two to be visited, and ties are again
broken lexicographically. This second priority queue is used in the case where
tf .label = tg.label but tf .id 6= tg.id , i.e. when both are needed to resolve the
request but they are not necessarily available at the same time. To this end, the
given request is moved from Qapp:1 into Qapp:2 on lines 19 – 23. Here, the request
is extended with the unique identifiers low and high of min(vf , vg), which makes
the children of min(vf , vg) available at max(vf , vg).

The next request to process from Qapp:1 or Qapp:2 is dictated by the TopOf
function on line 10. In the case that both Qapp:1 and Qapp:2 are non-empty, let
r1 = (s1

is high1−−−−→ (tf :1, tg:1)) be the top element of Qapp:1 and let the top element
of Qapp:2 be r2 = (s2

is high2−−−−→ (tf :2, tg:2), low , high). TopOf(Qapp:1, Qapp:2) re-
turns (r1, Nil, Nil) if min(tf :1, tg:1) < max(tf :2, tg:2) and r2 otherwise. If either
one is empty, then it equivalently outputs the top request of the other.

The arc-based output greatly simplifies the algorithm compared to the orig-
inal proposal of Arge in [6]. Our algorithm only uses two priority queues rather
than four. Arge’s algorithm, like ours, resolves a node before its children, but due
to the node-based output it has to output this entire node before its children.
Hence, it has to identify all nodes by the tuple (tf , tg), doubling the space used.
Instead, the arc-based output allows us to output the information at the time of
the children and hence we are able to generate the label and its new identifier for
both parent and child. Arge’s algorithm also did not forwarded a request’s source
s, so repeated requests to the same pair of nodes were merely discarded upon
retrieval from the priority queue, since they carried no relevant information. Our
arc-based output, on the other hand, makes every element placed in the priority
queue forward the source s, vital for the creation of the semi-transposed graph.

Proposition 1 (Following Arge 1996 [6]). The Apply algorithm in Fig. 5 has
I/O complexity O(sort(Nf ·Ng)) and O((Nf ·Ng) · log(Nf ·Ng)) time complexity,
where Nf and Ng are the respective sizes of the BDDs for f and g.

See the full paper [33] for the proof.

302 S. C. Sølvsten et al.

Pruning by shortcutting the operator The Apply procedure above, like
Arge’s original algorithm, follows recursion requests until a pair of leaves is met.
Yet, for example in Fig. 4 the node for the request (x2,0,>) is unnecessary to
resolve, since all leaves of this subgraph trivially will be > due to the implication
operator. The subsequent Reduce will remove this node and its children in favour
of the> leaf. Hence, the RequestsFor function can instead immediately create a
request for the leaf. We implemented this in Adiar, since it considerably decreases
the size of Qapp:1, Qapp:2, and of the output.

3.2 Reduce

Our Reduce algorithm in Fig. 6 works like other explicit variants with a single
bottom-up sweep through the OBDD. Since the nodes are resolved and output
in a bottom-up descending order, the output is exactly in the reverse order as
it is needed for any following Apply. We have so far ignored this detail, but the
only change necessary to the Apply algorithm in Section 3.1 is for it to read the
list of nodes of f and g in reverse.

The priority queue Qred is used to forward the reduction result of a node v
to its parents in an I/O-efficient way. Qred contains arcs from unresolved sources
s in the given unreduced OBDD to already resolved targets t′ in the ROBDD
under construction. The bottom-up traversal corresponds to resolving all nodes
in descending order. Hence, arcs s is high−−−→ t′ in Qred are first sorted on s and
secondly on is high; the latter simplifies retrieving the low and high arcs on lines
8 and 9. The base-cases for the Reduce algorithm are the arcs to leaves in Fleaf ,
which follow the exact same ordering. Hence, on lines 8 and 9, arcs in Qred
and Fleaf are merged using the PopMax function that retrieves the arc that is
maximal with respect to this ordering.

Since nodes are resolved in descending order, Finternal follows this ordering
on the arc’s target when elements are read in reverse. The reversal of arcs in
Finternal makes the parents of a node v, to which the reduction result is to be
forwarded, readily available on lines 26 – 32.

The algorithm otherwise proceeds similarly to the standard Reduce algorithm
[10]. For each level j, all nodes v of that level are created from their high and
low arcs, ehigh and elow , taken out of Qred and Fleaf . The nodes are split into the
two temporary files Fj:1 and Fj:2 that contain the mapping [uid 7→ uid ′] from a
node in the given unreduced OBDD to its equivalent node in the output. Fj:1
contains the nodes v removed due to the first reduction rule and is populated
on lines 7 – 12: if both children of v are the same then [v.uid 7→ v.low] is pushed
to this file. Fj:2 contains the mappings for the second rule and is populated on
lines 15 – 24. Nodes not placed in Fj:1 are placed in an intermediate file Fj

and sorted by their children. This makes duplicate nodes immediate successors.
Every unique node encountered in Fj is output to Fout before mapping itself
and all its duplicates to it in Fj:2. Since nodes are output out-of-order compared
to the input and it is unknown how many will be output for said level, they
are given new decreasing identifiers starting from the maximal possible value
MAX ID. Finally, Fj:2 is sorted back in order of Finternal to forward the results

Adiar: Binary Decision Diagrams in External Memory 303

1 Reduce(Finternal , Fleaf)
2 Fout ←[] ; Qred ← ∅
3 while Qred 6= ∅ do
4 j ← Qred . top () . source . l a b e l ; id ←MAX ID;
5 Fj ← [] ; Fj:1 ← [] ; Fj:2 ← []
6
7 while Qred . top () . source . l a b e l = j do
8 ehigh ←PopMax(Qred , Fleaf)
9 elow ← PopMax(Qred , Fleaf)

10 i f ehigh . t a r g e t = elow . t a r g e t
11 then Fj:1 . push ([elow . source 7→ elow . t a r g e t])
12 else Fj . push ((elow . source , elow . ta rget , ehigh . t a r g e t))
13 od
14
15 s o r t v ∈ Fj by v . low and secondly by v . high
16 v′ ← undef ined
17 for each v ∈ Fj do
18 i f v′ i s undef ined or v . low 6= v′ . low or v . high 6= v′ . high
19 then
20 id ← id − 1
21 v′ ← (xj,id , v . low , v . high)
22 Fout . push (v)
23 Fj:2 . push ([v . uid 7→ v′ . uid])
24 od
25
26 s o r t [uid 7→ uid ′]∈ Fj:2 by uid in descending order
27 for each [uid 7→ uid ′] ∈ MergeMaxUid(Fj:1 , Fj:2) do
28 while a rc s from Finternal . peek () matches −→ uid do
29 (s is high−−−→ uid) ← Finternal . next ()
30 Qred . push (s is high−−−→ uid ′)
31 od
32 od
33 od
34 return Fout

Fig. 6: The Reduce algorithm

in both Fj:1 and Fj:2 to their parents on lines 26 – 32. Here, MergeMaxUid
merges the mappings [uid 7→ uid ′] in Fj:1 and Fj:2 by always taking the mapping
with the largest uid from either file.

Since the original algorithm of Arge in [6] takes a node-based OBDD as
an input and internally uses node-based auxiliary data structures, his Reduce
algorithm had to create two copies of the input to reverse all internal arcs: a
copy sorted by the nodes’ low child and one sorted by their high children. Since
Finternal already has its arcs reversed, our design eliminates two expensive sorting
steps and more than halves the memory used.

304 S. C. Sølvsten et al.

Another consequence of Arge’s node-based representation is that his algo-
rithm had to move all arcs to leaves into Qred rather than merging requests from
Qred with the base-cases from Fleaf . The semi-transposed input allows us to de-
crease the number of I/Os due to Qred by Θ(sort(N`)) where N` are the number
of arcs to leaves (see [33] for the proof). In practice, together with pruning the
recursion during Apply, this can provide up to a factor 2 speedup [33].

Proposition 2 (Following Arge 1996 [6]). The Reduce algorithm in Fig. 6
has an O(sort(N)) I/O complexity and an O(N logN) time complexity.

See the full paper [33] for the proof. Arge proved in [6] that this O(sort(N))
I/O complexity is optimal for the input, assuming a levelwise ordering of nodes.

3.3 Other BDD Algorithms

By applying the above algorithmic techniques, one can obtain all other singly-
recursive BDD algorithms; see [33] for the details. We now design asymptotically
better variants of Negation and Equality Checking than what is possible by
deriving them using Apply.

Negation A BDD is negated by inverting the value in its nodes’ leaf children.
This is an O(1) I/O-operation if a negation flag is used to mark whether the
nodes should be negated on-the-fly as they are read from the stream.

Proposition 3. Negation has I/O, space, and time complexity O(1).

This is an improvement over the O(sort(N)) I/Os spent by Apply to compute
f⊕>, where ⊕ is exclusive or. Furthermore, disk space is shared between BDDs.

Equality Checking To check for f ≡ g one has to check the DAG of f being
isomorphic to the one for g [10]. This makes f and g trivially inequivalent when
the number of nodes, number of levels, or the label or size of each of the L levels
do not match. This can be checked in O(1) and O(L/B) I/Os if the Reduce
algorithm in Fig. 6 is made to also output the relevant meta-information.

If f ≡ g, the isomorphism relates the roots of the BDDs for f and g. For
any node vf of f and vg of g, if (vf , vg) is uniquely related by the isomorphism,
then so should (vf .low , vg.low) and (vf .high, vg.high). Hence, one can check for
equality by traversing the product of both BDDs (as in Apply) and check for
one of the following two conditions being violated.

– The children of the given recursion request (tf , tg) should either both be the
same leaf or an internal node with the same label.

– On level i, exactly Ni unique recursion requests should be retrieved from the
priority queues, where Ni are the number of nodes on level i.

If the first condition is never violated, it is guaranteed that f ≡ g, and so >
is output. The second ensures that the algorithm terminates earlier on negative
cases and lowers the provable complexity bound; see [33] for the proof.

Adiar: Binary Decision Diagrams in External Memory 305

Proposition 4. Equality Checking has I/O complexity O(sort(N)) and time
complexity O(N logN), where N = min(Nf , Ng) is the minimum of the respec-
tive sizes of the BDDs for f and g.

If (1) on page 5 is extended such that ⊥,> succeed all unique identifiers and
⊥ < >, then Fig. 6 actually enforces a much stricter ordering; it outputs nodes
in an order purely based on their label and the unique identifier of their children.

Proposition 5. If Gf and Gg are outputs of Reduce in Fig. 6, then f ≡ g if
and only if the ith nodes of Gf and Gg match numerically.

See the full paper [33] for the proof. The negation operation breaks this property
by changing the leaf values without changing their order. So, in the case where f
or g, but not both, have their negation flag set, one still has to use the O(sort(N))
algorithm above, but otherwise a simple linear scan of both BDDs suffices.

Corollary 1. If the negation flag of the BDDs for f and g are equal, then
Equality Checking can be done in 2 · N/B I/Os and O(N) time, where N =
min(Nf , Ng) is the minimum of the respective sizes of the BDDs for f and g.

Both Proposition 4 and Corollary 1 are an asymptotic improvement on the
O(sort(N2)) equality checking algorithm by computing f ↔ g with Apply and
Reduce and then test whether the output is the > leaf.

4 Adiar: An Implementation

The algorithms and data structures described in Section 3 have been imple-
mented in a new BDD package, named Adiar1, 2. The most important opera-
tions are shown in Table 1. Interaction with the BDD package is done through
C++ programs that include the <adiar/adiar.h> header file and are built and
linked with CMake. Its two dependencies are the Boost library and the TPIE
library; the latter is included as a submodule of the Adiar repository, leaving it
to CMake to build TPIE and link it to Adiar.

Adiar is initialised with the adiar init(memory, temp dir) function, where
memory is the memory (in bytes) dedicated to Adiar and temp dir is the directory
where temporary files will be placed, e.g. a dedicated harddisk. The BDD package
is deinitialised by calling the adiar deinit() function.

The bdd object in Adiar is a container for the underlying files for each BDD,
while a bdd object is used for possibly unreduced arc-based OBDDs. Reference
counting on the underlying files is used to reuse the same files and to immediately
delete them when the reference count decrements to 0. Files are deleted as early
as possible by use of implicit conversions between the bdd and bdd objects and
an overloaded assignment operator, making the concurrently occupied space on
disk minimal.
1 adiar 〈 portuguese 〉 (verb) : to defer, to postpone
2 Source code is publicly available at github.com/ssoelvsten/adiar

306 S. C. Sølvsten et al.

https://github.com/ssoelvsten/adiar

Adiar function Operation I/O complexity Justification
bdd apply(f,g,�) f � g O(sort(NfNg)) Prop. 1, 2
bdd ite(f,g,h) f ? g : h O(sort(NfNgNh)) [33], Prop. 2
bdd restrict(f,i,v) f |xi=v O(sort(Nf)) [33], Prop. 2
bdd exists(f,i) ∃v : f |xi=v O(sort(N2

f)) [33], Prop. 2
bdd forall(f,i) ∀v : f |xi=v O(sort(N2

f)) [33], Prop. 2
bdd not(f) ¬f O(1) Prop. 3
bdd satcount(f) #x : f(x) O(sort(Nf)) [33]
bdd nodecount(f) Nf O(1) Section 3.3
f == g f ≡ g O(sort(min(Nf , Ng))) Prop. 4

Table 1: Some of the operations supported by Adiar and their I/O-complexity.

5 Experimental Evaluation

While time-forwarding may be an asymptotic improvement over the recursive
approach in the I/O-model, its usability in practice is another question entirely.
We have compared Adiar 1.0.1 to the recursive BDD packages CUDD 3.0.0 [34]
and Sylvan 1.5.0 [16] (in single-core mode). We constructed BDDs for some
benchmarks in all tools in a similar manner, ensuring the same variable ordering.

The experimental results3 were obtained on server nodes of the Grendel clus-
ter at the Centre for Scientific Computing Aarhus. Each node has two 48-core 3.0
GHz Intel Xeon Gold 6248R processors, 384 GiB of RAM, 3.5 TiB of available
SSD disk, run CentOS Linux, and compile code with GCC 10.1.0. We report the
minimum measured running time, since it minimises any error caused by the
CPU, memory and disk [13]; using the average or median does not significantly
change any of our results. For comparability all compute nodes are set to use
350 GiB of the available RAM, while each BDD package is given 300 GiB of it.
Sylvan was set to not use any parallelisation, given a ratio between the node
table and the cache of 64:1 and set to start its data structures 212 times smaller
than the final 262 GiB it may occupy, i.e. at first with a table and cache that
occupies 66 MiB. The size of the CUDD cache was set such it would have the
same node table to cache ratio when reaching 300 GiB.

5.1 Queens

The solution to the Queens problem is the number of arrangements of N queens
on an N × N board, such that no queen is threatened by another. Our bench-
mark follows the description in [22]: the variable xij represents whether a queen
is placed on the ith row and the jth column and the solution to the prob-
lem then corresponds to the number of satisfying assignments to the formula∧N−1

i=0
∨N−1

j=0 (xij ∧ ¬has threat(i, j)), where has threat(i, j) is true, if a queen is
placed on a tile (k, l), that would be in conflict with a queen placed on (i, j).
3 Available at Zenodo [32] and at github.com/ssoelvsten/bdd-benchmark

Adiar: Binary Decision Diagrams in External Memory 307

https://github.com/ssoelvsten/bdd-benchmark

12 13 14 15 16 17

101

102

103

104

105

N

s

12 13 14 15 16 17

0.5

1

1.5

2

N

µ
s

/
B

D
D

no
de

Adiar CUDD Sylvan

Fig. 7: Running time solving N -Queens (lower is better).

The ROBDD of the innermost conjunction can be directly constructed, without
any BDD operations.

The current version of Adiar is implemented purely using external memory
algorithms. These perform poorly when given small amounts of data. Hence, it
is not meaningful to compare performance for N < 12 where the BDDs involved
are 23.5 MiB or smaller. For N ≥ 12, Fig. 7 shows how the gap in running time
between Adiar and other BDD packages shrinks as instances grow. At N = 15,
which is the largest instance solved by Sylvan and CUDD, Adiar is 1.47 times
slower than CUDD and 2.15 times slower than Sylvan.

The largest instance solved by Adiar is N = 17 where the largest BDD
constructed is 719 GiB in size. In contrast, Sylvan only constructed a 12.9 GiB
sized BDD for N = 15. Even though Adiar has to use disk, it only becomes
1.8 times slower per processed node compared to its highest performance at
N = 13. Conversely, Adiar is able to solve the N = 15 problem with much less
main memory than both Sylvan and CUDD. Fig. 8 shows the running time on
the same machine with its memory, including its file system cache, limited with
cgroups to be 1 GiB more than given to the BDD package. Yet, Adiar is only 1.39
times slower when decreasing its memory down to 2 GiB, while Sylvan cannot
function with less than 56 GiB of memory available.

0 50 100 150 200 250
0

1,000

2,000

3,000

4,000

5,000

6,000

Memory (GiB)

s

Adiar
CUDD
Sylvan

Fig. 8: Running time of 15-Queens with variable memory (lower is better).

308 S. C. Sølvsten et al.

We also ran experiments on counting the number of draw positions in a 3D-
version of Tic-Tac-Toe, derived from [22]. Our results [33] paint a similar picture:
Adiar is only 2.50 times slower than Sylvan for Sylvan’s largest solved instance;
Sylvan only creates BDDs of up to 34.4 GiB in size, whereas Adiar constructs
a 902 GiB sized BDD; Adiar only slows down by a factor of 2.49 per processed
node when using the disk extensively to solve the larger instances.

5.2 Combinatorial Circuit Verification

The EPFL Combinational Benchmark Suite [2] consists of 23 combinatorial cir-
cuits designed for logic optimisation and synthesis. 20 of these are split into the
two categories random/control and arithmetic, and each of these original cir-
cuits Co is distributed together with one circuit optimised for size Cs and one
circuit optimised for depth Cd. The last three are the More than a Million Gates
benchmarks, which we will ignore as they come without optimised versions.

Based on the approach of the Nanotrav program as distributed with CUDD,
we verify the functional equivalence between each output gate of Co and the
corresponding gate in each optimised circuits Cd, and Cs. The BDDs are com-
puted by representing every input gate by a decision variable, and computing the
BDD of all other gates from the BDDs of their input wires. Finally, the BDDs
for every pair of corresponding output gates are tested for equality. Memoisation
ensures that the same gate is not computed twice, while a reference counter is
maintained for each gate such that dead BDDs in the memoisation table may
be garbage collected. Recall that Adiar stores each BDD in a separate file, while
Sylvan and CUDD share nodes between different BDDs in a forest.

Table 2 shows the number of verified instances with each BDD package within
a 15 days time limit. Adiar is able to verify three more benchmarks than both
other BDD packages. This is despite the fact that most instances include hun-
dreds of concurrent BDDs, while the disk is only 12 times larger than main
memory. For example, the largest verified benchmark, mem ctrl, has up to 1231
BDDs existing at the same time.

Table 3 shows the time it took Adiar to verify equality between the original
and each of the optimised circuits, for the three largest cases verified. The table
also shows the sum of the sizes of the output BDDs that represent each circuit.
Throughout all solved benchmarks, equality checking took less than 1.47% of
the total construction time and the O(N/B) algorithm could be used in 71.6%
of all BDD comparisons. The voter benchmark with its single output shows that

solved # out-of-space # time-out
Adiar 23 6 11
CUDD 20 19 1
Sylvan 20 13 7

Table 2: Number of verified arithmetic and random/control circuits from [2]

Adiar: Binary Decision Diagrams in External Memory 309

depth size
Time (s) 5862 5868
O(sort(N)) 496 476
O(N/B) 735 755
N (MiB) 614313

(a) mem ctrl

depth size
Time (s) 3.89 3.27
O(sort(N)) 22 22
O(N/B) 3 3
N (MiB) 3589

(b) sin

depth size
Time (s) 0.058 0.006
O(sort(N)) 1 0
O(N/B) 0 1
N (MiB) 5.74

(c) voter

Table 3: Running time for equivalence testing. O(sort(N)) and O(N/B) is the
number of times the respective algorithm in Section 3.3 was used.

the O(N/B) algorithm is about 10 times faster than the O(sort(N)) algorithm
and can compare at least 2 · 5.75 MiB/0.006 s = 1.86 GiB/s.

6 Conclusions and Future Work

Adiar provides an I/O-efficient implementation of BDDs. The iterative BDD
algorithms exploit a topological ordering of the BDD nodes in external memory,
by use of priority queues and sorting algorithms. All recursion requests for a
single node are processed together, eliminating the need for a memoisation table.

The performance of Adiar is very promising in practice for instances larger
than a few hundred MiB. As the size of the BDDs increase, the performance of
Adiar gets closer to conventional recursive BDD implementations – for BDDs
larger than a few GiB the use of Adiar has at most resulted in a 3.69 factor
slowdown. Simultaneously, the design of our algorithms allow us to compute on
BDDs that outgrow main memory with only a 2.49 factor slowdown, which is
negligible compared to use of swap memory with conventional BDD packages.

This performance comes at the cost of Adiar not being able to share nodes
between BDDs. Yet, this increase in space usage is not a problem in practice
and it makes garbage collection a trivial and cheap deletion of files on disk. On
the other hand, the lack of sharing makes it impossible to check for functional
equivalence with a mere pointer comparison. Instead, one has to explicitly check
for the two DAGS being isomorphic. We have improved the asymptotic and
practical performance of equality checking such that it is negligible in practice.

This lays the foundation on which we intend to develop external memory ver-
sions of the BDD algorithms that are still missing for symbolic model checking.
Specifically, we intend to improve the performance of quantifying multiple vari-
ables and designing a relational product operation. Furthermore, we will improve
performance for small instances that fit entirely into internal memory.

Acknowledgements

Thanks to the late Lars Arge, to Gerth S. Brodal, and to Mathias Rav for
their inputs. Furthermore, thanks to the Centre for Scientific Computing Aarhus
(phys.au.dk/forskning/cscaa/) for running our experiments on their cluster.

310 S. C. Sølvsten et al.

http://phys.au.dk/forskning/cscaa/

References
1. Aggarwal, A., Vitter, Jeffrey, S.: The input/output complexity of sorting

and related problems. Communications of the ACM 31(9), 1116–1127 (1988).
https://doi.org/10.1145/48529.48535

2. Amarú, L., Gaillardon, P.E., De Micheli, G.: The EPFL combinational benchmark
suite. In: 24th International Workshop on Logic & Synthesis (2015)

3. Amparore, E., Donatelli, S., Gallà, F.: A CTL* model checker for Petri nets. In:
Application and Theory of Petri Nets and Concurrency. Lecture Notes in Computer
Science, vol. 12152, pp. 403–413. Springer (2020). https://doi.org/10.1007/978-3-
030-51831-8 21

4. Arge, L.: The buffer tree: A new technique for optimal I/O-algorithms. In:
Workshop on Algorithms and Data Structures (WADS). Lecture Notes in
Computer Science, vol. 955, pp. 334–345. Springer, Berlin, Heidelberg (1995).
https://doi.org/10.1007/3-540-60220-8 74

5. Arge, L.: The I/O-complexity of ordered binary-decision diagram manipu-
lation. In: 6th International Symposium on Algorithms and Computations
(ISAAC). Lecture Notes in Computer Science, vol. 1004, pp. 82–91 (1995).
https://doi.org/10.1007/BFb0015411

6. Arge, L.: The I/O-complexity of ordered binary-decision diagram. In: BRICS RS
preprint series. vol. 29. Department of Computer Science, University of Aarhus
(1996). https://doi.org/10.7146/brics.v3i29.20010

7. Arge, L.: External geometric data structures. In: 10th International Computing
and Combinatorics Conference (COCOON). Lecture Notes in Computer Science,
vol. 3106 (2004). https://doi.org/10.1007/978-3-540-27798-9 1

8. Ashar, P., Cheong, M.: Efficient breadth-first manipulation of binary de-
cision diagrams. In: IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). pp. 622–627. IEEE Computer Society Press (1994).
https://doi.org/10.1109/ICCAD.1994.629886

9. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD pack-
age. In: 27th Design Automation Conference (DAC). pp. 40–45. Association for
Computing Machinery (1990). https://doi.org/10.1109/DAC.1990.114826

10. Bryant, R.E.: Graph-based algorithms for Boolean function manip-
ulation. IEEE Transactions on Computers C-35(8), 677–691 (1986).
https://doi.org/10.1109/TC.1986.1676819

11. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys 24(3), 293–318 (1992).
https://doi.org/10.1145/136035.136043

12. Bryant, R.E.: Binary decision diagrams. In: Clarke, E.M., Henzinger, T.A., Veith,
H., Bloem, R. (eds.) Handbook of Model Checking, pp. 191–217. Springer Inter-
national Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

13. Chen, J., Revels, J.: Robust benchmarking in noisy environments. arXiv (2016),
https://arxiv.org/abs/1608.04295

14. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. In: International Conference on Computer Aided Verification (CAV).
Lecture Notes in Computer Science, vol. 2404, pp. 359–364. Springer, Berlin, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45657-0 29

15. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
checker. International Journal on Software Tools for Technology Transfer 2, 410–
425 (2000). https://doi.org/10.1007/s100090050046

Adiar: Binary Decision Diagrams in External Memory 311

https://doi.org/10.1145/48529.48535
https://doi.org/10.1007/978-3-030-51831-8_21
https://doi.org/10.1007/978-3-030-51831-8_21
https://doi.org/10.1007/3-540-60220-8_74
https://doi.org/10.1007/BFb0015411
https://doi.org/10.7146/brics.v3i29.20010
https://doi.org/10.1007/978-3-540-27798-9_1
https://doi.org/10.1109/ICCAD.1994.629886
https://doi.org/10.1109/DAC.1990.114826
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1145/136035.136043
https://doi.org/10.1007/978-3-319-10575-8
https://arxiv.org/abs/1608.04295
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/s100090050046

16. Van Dijk, T., Van de Pol, J.: Sylvan: multi-core framework for decision diagrams.
International Journal on Software Tools for Technology Transfer 19, 675–696
(2016). https://doi.org/10.1007/s10009-016-0433-2

17. Gammie, P., Van der Meyden, R.: MCK: Model checking the logic of knowledge.
In: Computer Aided Verification. Lecture Notes in Computer Science, vol. 3114,
pp. 479–483. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27813-9 41

18. He, L., Liu, G.: Petri net based symbolic model checking for computation tree logic
of knowledge. arXiv (2020), https://arxiv.org/abs/2012.10126

19. Kant, G., Laarman, A., Meijer, J., Van de Pol, J., Blom, S., Van Dijk, T.:
LTSmin: High-performance language-independent model checking. In: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes
in Computer Science, vol. 9035, pp. 692–707. Springer, Berlin, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

20. Karplus, K.: Representing Boolean functions with if-then-else DAGs. Tech. rep.,
University of California at Santa Cruz, USA (1988)

21. Klarlund, N., Rauhe, T.: BDD algorithms and cache misses. In: BRICS Report
Series. vol. 26 (1996). https://doi.org/10.7146/brics.v3i26.20007

22. Kunkle, D., Slavici, V., Cooperman, G.: Parallel disk-based computa-
tion for large, monolithic binary decision diagrams. In: 4th International
Workshop on Parallel Symbolic Computation (PASCO). pp. 63–72 (2010).
https://doi.org/10.1145/1837210.1837222

23. Lind-Nielsen, J.: BuDDy: A binary decision diagram package. Tech. rep., Depart-
ment of Information Technology, Technical University of Denmark (1999)

24. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. International Journal on Software Tools for
Technology Transfer 19, 9–30 (2017). https://doi.org/10.1007/s10009-015-0378-x

25. Long, D.E.: The design of a cache-friendly BDD library. In: Proceedings of the
1998 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
pp. 639–645. Association for Computing Machinery (1998)

26. Minato, S.i., Ishihara, S.: Streaming BDD manipulation for large-scale combinato-
rial problems. In: Design, Automation and Test in Europe Conference and Exhi-
bition. pp. 702–707 (2001). https://doi.org/10.1109/DATE.2001.915104

27. Minato, S.i., Ishiura, N., Yajima, S.: Shared binary decision diagram with at-
tributed edges for efficient Boolean function manipulation. In: 27th Design Au-
tomation Conference (DAC). pp. 52–57. Association for Computing Machinery
(1990). https://doi.org/10.1145/123186.123225

28. Ochi, H., Yasuoka, K., Yajima, S.: Breadth-first manipulation of very
large binary-decision diagrams. In: International Conference on Computer
Aided Design (ICCAD). pp. 48–55. IEEE Computer Society Press (1993).
https://doi.org/10.1109/ICCAD.1993.580030

29. Petersen, L.H.: External Priority Queues in Practice. Master’s thesis, Department
of Computer Science, University of Aarhus (2007)

30. Sanders, P.: Fast priority queues for cached memory. ACM Journal of Experimental
Algorithmics 5, 7–32 (2000). https://doi.org/10.1145/351827.384249

31. Sanghavi, J.V., Ranjan, R.K., Brayton, R.K., Sangiovanni-Vincentelli, A.: High
performance BDD package by exploiting memory hierarchy. In: 33rd Design Au-
tomation Conference (DAC). pp. 635–640. Association for Computing Machinery
(1996). https://doi.org/10.1145/240518.240638

32. Sølvsten, S.C., Van de Pol, J.: Adiar v1.0.1 : TACAS 2022 artifact. Zenodo (2021).
https://doi.org/10.5281/zenodo.5638335

312 S. C. Sølvsten et al.

https://doi.org/10.1007/s10009-016-0433-2
https://doi.org/10.1007/978-3-540-27813-9_41
https://doi.org/10.1007/978-3-540-27813-9_41
https://arxiv.org/abs/2012.10126
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.7146/brics.v3i26.20007
https://doi.org/10.1145/1837210.1837222
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1109/DATE.2001.915104
https://doi.org/10.1145/123186.123225
https://doi.org/10.1109/ICCAD.1993.580030
https://doi.org/10.1145/351827.384249
https://doi.org/10.1145/240518.240638
https://doi.org/10.5281/zenodo.5638335

33. Sølvsten, S.C., Van de Pol, J., Jakobsen, A.B., Thomasen, M.W.B.: Efficient binary
decision diagram manipulation in external memory. arXiv (2021), https://arxiv.
org/abs/2104.12101

34. Somenzi, F.: CUDD: CU decision diagram package, 3.0. Tech. rep., University of
Colorado at Boulder (2015)

35. Velev, M.N., Gao, P.: Efficient parallel GPU algorithms for BDD ma-
nipulation. In: 19th Asia and South Pacific Design Automation Con-
ference (ASP-DAC). pp. 750–755. IEEE Computer Society Press (2014).
https://doi.org/10.1109/ASPDAC.2014.6742980

36. Vengroff, D.E.: A Transparent Parallel I/O Environment. In: DAGS Symposium
on Parallel Computation. pp. 117–134 (1994)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Adiar: Binary Decision Diagrams in External Memory 313

https://arxiv.org/abs/2104.12101
https://arxiv.org/abs/2104.12101
https://doi.org/10.1109/ASPDAC.2014.6742980
http://creativecommons.org/licenses/by/4.0/

	Adiar
	1 Introduction
	2 Preliminaries
	3 BDD Manipulation by Time-forward Processing
	4 Adiar: An Implementation
	5 Experimental Evalua
	6 Conclusions and Future Work
	References

