l‘)

Check for
updates

Adiar 1.1

Zero-Suppressed Decision Diagrams in External Memory

Steffan Christ Sglvsten®)@® and Jaco van de Pol

Aarhus University, Aarhus, Denmark
{soelvsten,jaco}@cs.au.dk

Abstract. We outline how support for Zero-suppressed Decision Dia-
grams (ZDDs) has been achieved for the external memory BDD package
Adiar. This allows one to use ZDDs to solve various problems despite
their size exceed the machine’s limit of internal memory.

Keywords: Zero-suppressed Decision Diagrams + External Memory
Algorithms

1 Introduction

Minato introduced Zero-suppressed Decision Diagrams (ZDDs) [15] as a varia-
tion on Bryant’s Binary Decision Diagrams (BDDs) [5]. ZDDs provide a canon-
ical description of a Boolean m-ary function f that is more compact than the
corresponding BDD when f is a characteristic function for a family F C {0,1}"
of sparse vectors over some universe of n variables. This makes ZDDs not only
useful for solving combinatorial problems [15] but they can also surpass BDDs
in the context of symbolic model checking [21] and they are the backbone of the
PoLyBoORI library [4] used in algebraic cryptoanalysis.

The Adiar BDD package [19] provides an implementation of BDDs in C++17
that is I/O-efficient [1]. This allows Adiar to manipulate BDDs that outgrow the
size of the machine’s internal memory, i.e., RAM, by efficiently exploiting how
they are stored in external memory, i.e., on the disk. The source code for Adiar
is publicly available at

github.com/ssoelvsten/adiar

All 1.2 versions of Adiar have only been tested on Linux with GCC. But, with
version 2.0, it is ensured that Adiar supports the GCC, Clang, and MSVC com-
pilers on Linux, Mac, and Windows.

We have added in Adiar 1.1 support for the basic ZDD operations while
also aiming for the following two criteria: the addition of ZDDs should (1) avoid
any code duplication to keep the codebase maintainable and (2) not negatively
impact the performance of existing functionality. Section2 describes how this
was achieved and Sect. 3 provides an evaluation.

Other mature BDD packages also support ZDDs, e.g., CUDD [20], BiDDy [13],
Sylvan [8] and PJBDD [2], but unlike Adiar none of these support manipulation
of ZDDs beyond main memory. The only other BDD package designed for out-of-
memory BDD manipulation, CAL [16], does not support ZDDs.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Y. Rozier and S. Chaudhuri (Eds.): NFM 2023, LNCS 13903, pp. 464-471, 2023.
https://doi.org/10.1007/978-3-031-33170-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33170-1_28&domain=pdf
http://orcid.org/0000-0003-0963-6569
http://orcid.org/0000-0003-4305-0625
https://github.com/ssoelvsten/adiar
https://doi.org/10.1007/978-3-031-33170-1_28

Adiar 1.1: Zero-Suppressed Decision Diagrams in External Memory 465

O
S O o O

(a) Node Merglng) BDD Rule (c) ZDD Rule

Fig. 1. Reduction Rules for BDDs and ZDDs.

2 Supporting both BDDs and ZDDs

The Boolean function f :{0,1}"™ — {0,1} is the characteristic function for the
set of bitvectors F' = {@ € {0,1}" | f(x) = 1}. Each bitvector x is equivalent to
a conjunction of the indices set to 1 and hence F can quite naturally be described
as a DNF formula, i.e., a set of set of variables.

A decision diagram is a rooted directed acyclic graph (DAG) with two sinks:
a 0-leaf and a 1-leaf. Each internal node has two children and contains the label
1 € N to encode the if-then-else of a variable x;. The decision diagram is ordered
by ensuring each label only occurs once and in sorted order on all paths from
the root. The diagram is also reduced if duplicate nodes are merged as shown in
Fig. 1a. Furthermore as shown respectively in Fig.1b and 1lc, BDDs and ZDDs
also suppress a certain type of nodes as part of their reduction to further decrease
the diagram’s size. The suppression rule for ZDDs in Fig. 1c ensures each path
in the diagram corresponds one-to-one to a term of the DNF it represents.

Both BDDs and ZDDs provide a succinct way to manipulate Boolean for-
mulae by computing on their graph-representation instead. The difference in the
type of node being suppressed in each type of decision diagram has an impact on
the logic within these graph algorithms. For example, applying a binary opera-
tor, e.g., and for BDDs and intersection for ZDDs, is a product construction for
both types of decision diagrams. But since the and operator is shortcutted by
the 0-leaf, the computation depends on the shape of the suppressed nodes.

Hence, as shown in Fig.2, we have generalized the relevant algorithms in
Adiar with a policy-based design, i.e., a compile-time known strategy pattern,
so the desired parts of the code can be varied internally. For example, most
of the logic within the BDD product construction has been moved to the tem-
plated product_construction function. The code-snippets that distinguish the
bdd_apply from the corresponding ZDD operation zdd _binop are encapsulated
within the two policy classes: apply_prod_policy and zdd_prod_policy. This
ensures that no code duplication is introduced. This added layer of abstrac-
tion has no negative impact on performance, since the function calls are known
and inlined at compile-time. No part of this use of templates is exposed to the
end-user, by ensuring that each templated algorithm is compiled into its final
algorithms within Adiar’s . cpp files.

466 S. C. Sglvsten and J. van de Pol
<adiar>
bdd.h |——— | adiar.h [¢——| zdd.h
A A
e = e mmmmm e H
I
<adiar/bdd> } } <adiar/zdd>
[
bdd.h bdd_policy.h ; ; zdd_policy.h zdd.h
bdd [+ bdd_policy 1 } zdd_policy —| zdd
x]] \ A
! l 1 I | l !
|
! apply.cpp | : binop.cpp !
bdd. cpp P zdd. cpp
~—| apply_prod_policy | } zdd_prod_policy |<—
bdd_apply(...) _it_i_| zdd_binop(...)
1
L
<adiar/internal>
reduce.h decision_diagram.h product_construction.h
reduce<...>(...) decision_diagram product_construction<...>(...)

Fig. 2. Architecture of Adiar v1.1. Solid lines are direct inclusions of one file in another
while dashed lines represent the implementation of a declared function.

Table 1. Supported ZDD operations in Adiar v1.1. The semantics views a ZDD as a
set of sets of variables in dom.

Adiar ZDD function ‘ Operation Semantics ‘ Generalised BDD function

ZDD Manipulation

zdd_binop(A, B,®) {z|z€ ARz c B} bdd_apply
zdd_change(A, vars) {(a \ vars) U (vars \ a) | a € A}
zdd_complement (A, dom) | P(dom) \ A

zdd-expand(A, vars) UgeafaUwv | v € P(vars)}

zdd_offset (A, vars) {a€ AlvarsNa=0} bdd_restrict
zdd-onset (A, vars) {a € A|wvars C a} bdd_restrict
zdd_project (A, vars) Proj yars (A) bdd_exists
Counting

zdd_size(A) |A| bdd_pathcount
zdd_nodecount (A) Ny bdd nodecount
zdd-varcount (A) L bdd_varcount
Predicates

zdd_equal(A, B) A=B bdd-equal
zdd_unequal(A, B) A#B bdd_equal
zdd_subseteq(A, B) ACB bdd-equal
zdd_disjoint (A, B) ANB=10 bdd_equal
Set elements

zdd-contains(A, vars) vars € A bdd-eval
zdd-minelem(A) min(A) bdd_satmin
zdd_maxelem(A) max(A) bdd_satmax
Conversion

zdd_from(f, dom)
bdd-from(A, dom)

{z € P(dom) | f(z) =T}
x : P(dom) — x € A

Adiar 1.1: Zero-Suppressed Decision Diagrams in External Memory 467

For each type of decision diagram there is a class, e.g., bdd, and a separate
policy, e.g., bdd_policy, that encapsulates the common logic for that type of
decision diagram, e.g., the reduction rule in Fig. 1b and the bdd type. This policy
is used within the bdd and zdd class to instantiate the specific variant of the
Reduce algorithm that is applied after each operation. The algorithm policies,
e.g., the two product construction policies above, also inherit information from
this diagram-specific policy. This ensures the policies can provide the information
needed by the algorithm templates.

Table 1 provides an overview of all ZDD operations provided in Adiar 1.1,
including what BDD operations they are generalized from. All but five of these
ZDD operations could be implemented by templating the current codebase. The
remaining five operations required the addition of only a single new algorithm of
similar shape to those in [19]; the differences among these five could be encap-
sulated within a policy for each operation.

3 Evaluation

3.1 Cost of Modularity

Table 2a shows the size of the code base, measured in lines of code (LOC), and
Table 2b the number of unique operations in the public API with and without
aliases. Due to the added modularity and features the entire code base grew by
a factor % = 1.59. Yet, the size of the public API excluding aliases increased
by a factor of % = 2.14; including aliases the public API grew by a factor of

1.98.

3.2 Experimental Evaluation

Impact on BDD Performance. Table3 shows the performance of Adiar
before and after implementing the architecture in Sect. 2. These two benchmarks,
N-Queens and Tic-Tac-Toe, were used in [19] to evaluate the performance of
its BDDs — specifically to evaluate its bdd_apply and reduce algorithms. The
choice of N is based on limitations in Adiar v1.0 and v1.1 (which are resolved
in Adiar v1.2). We ran these benchmarks on a consumer grade laptop with a 2.6
GHz Intel i7-4720HQ processor, 8 GiB of RAM (4 of which was given to Adiar)
and 230 GiB SSD disk.

Table 2. Lines of Code compared to number of functions in Adiar’s API.

Folder ‘ v1.0 vl.1 Adiar’'s API| v1.0 v1.1
adiar 3939 1643 BDD 22 23
adiar/bdd - 1019 (w/aliases) | +20 +22
adiar/zdd - 1052 7ZDD - 24
adiar/internal| — 2568 (w/aliases) - +14

(a) Lines of Code.

(b) Size of the Public APL

468 S. C. Sglvsten and J. van de Pol

Table 3. Minimum running time (s) before and after the changes in Sect. 2.

N | Before (v1.0) After (v1.1) N | Before (v1.0) After (v1.1)

13 107.8 108.9 22 616.8 517.9

14 680.8 625.2 23 3202.9 2881.1
(a) Queens (b) Tic-Tac-Toe

The 1% slowdown for the 13-Queens problem is well within the experimental
error introduced by the machine’s hardware and OS. Furthermore, the three
other benchmarks show a performance increase of 9% or more. Hence, it is safe to
conclude that the changes to Adiar have not negatively affected its performance.

ZDD Performance. We have compared Adiar 1.1’s and CUDD 3.0’s [20] per-
formance manipulating ZDDs. Our benchmarks are, similar to Sect. 2, templated
with adapters for each BDD package. Sylvan 1.7 [8] and BiDDy 2.2 [13] are not
part of this evaluation since they have no C++ interface; to include them, we
essentially would have to implement a free/protect mechanism for ZDDs for
proper garbage collection.

Figure 3 shows the normalized minimal running time of solving three combi-
natorial problems: the N-Queens and the Tic-Tac-Toe benchmarks from earlier
and the (open) Knight’s Tour problem based on [6]. We focus on combinatorial
problems due to what functionality is properly supported by Adiar at time of
writing. These experiments were run on the server nodes of the Centre for Sci-
entific Computing, Aarhus. Each node has two 3.0 GHz Intel Xeon Gold 6248R,
processors, 384 GiB of RAM (300 of which was given to the BDD package), 3.5
TiB of available SSD disk, runs CentOS Linux, and uses GCC 10.1.0.

Adiar is significantly slower than CUDD for small instances due to the over-
head of initialising and using external memory data structures. Hence, Fig. 3 only
shows the instances where the largest ZDD involved is 10 MiB or larger since
these meaningfully compare the algorithms in Adiar with the ones in CUDD.

15

O
. :
A 6 5 10
A 4
N 2 Q_k*// 1 H_‘// 5
~ 0 0 0 M
g 107 10° 101t 107 10° 10t 108 101
Total Number of Processed ZDD Nodes
(a) Queens, (b) Tic-Tac-Toe, (¢) Knight’s Tour,
N =12,...,18 N =20,...,29 boards 5x5,...,6 X7

Fig. 3. Normalised minimal running time of Adiar (blue) and CUDD (red). (Color
figure online)

Adiar 1.1: Zero-Suppressed Decision Diagrams in External Memory 469

Similar to the results in [19], also for ZDDs the gap in running time between
Adiar and CUDD shrinks as the instances grow. When solving the 15-Queens
problem, Adiar is 3.22 times slower than CUDD whereas for the 17-Queens
problem it is only 1.91 times slower. The largest Tic-Tac-Toe instance solved by
CUDD was N = 24 where Adiar was only 1.22 times slower. In both benchmarks,
Adiar handles more instances than CUDD: 18-Queens, resp. Tic-Tac-Toe for
N =29, results in a single ZDD of 512.8 GiB, resp. 838.9 GiB, in size.

The Knight’s Tour benchmark stays quite benign up until a chess board of
6 x 6. From that point, the computation time and size of the ZDDs quickly
explode. Adiar solved up to the 6 x 7 board in 2.5 days, where the largest ZDD
was only 2 GiB in size. We could not solve this instance with CUDD within 15
days. For instances also solved by CUDD, Adiar was up to 4.43 times slower.

4 Conclusion and Future Work

While the lines of code for Adiar’s BDDs has slightly increased, that does not
necessarily imply an increase in the code’s complexity. Notice that the archi-
tecture in Sect. 2 separates the recursive logic of BDD and ZDD manipulation
from the logic used to make these operations I/O-efficient. In fact, this separa-
tion significantly improved the readability and maintainability of both halves.
Furthermore, the C++ templates allow the compiler to output each variant of
an algorithm as if it was written by hand. Hence, as Sect. 3 shows, the addition
of ZDDs has not decreased Adiar’s ability to handle BDDs efficiently.

Adiar can be further modularized by templating diagram nodes to vary their
data and outdegree at compile-time. This opens the possibility to support Multi-
terminal [9], List [8], Functional [11], and Quantum Multiple-valued [14] Decision
Diagrams. If nodes support variadic out-degrees at run-time, then support for
Multi-valued [10] and Clock Difference [12] Decision Diagrams is possible and it
provides the basis for an I/O-efficient implementation of Annotated Terms [3].

This still leaves a vital open problem posed in [19] as future work: the cur-
rent technique used to achieve I/O-efficiency does not provide a translation for
operations that need to recurse multiple times for a single diagram node. Hence,
I/O-efficient dynamic variable reordering is currently not supported. Similarly,
zdd_project in Adiar v1.1 may be significantly slower than its counterparts in
other BDD packages. This also hinders the implementation of other complex
operations, such as the multiplication operations in [4,14,15], the generalisation
of composition in [5] to multiple variables, and the Restrict operator in [7].

Acknowledgements. Thanks to Marijn Heule and Randal E. Bryant for requesting
ZDDs are added to= Adiar. Thanks to the Centre for Scientific Computing, Aarhus,
(phys.au.dk/forskning/cscaa/) for running our benchmarks.

Data Availibility Statement. The data presented in Sect. 3 is available at [18] while
the code to obtain this data is provided at [17].

http://phys.au.dk/forskning/cscaa/

470 S. C. Sglvsten and J. van de Pol
References
1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related

10.

11.

12.

13.

14.

15.

16.

problems. Commun. ACM 31(9), 1116-1127 (1988). https://doi.org/10.1145/
48529.48535

Beyer, D., Friedberger, K., Holzner, S.: PJBDD: a BDD library for Java and multi-
threading. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS, vol. 12971, pp. 144—
149. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88885-5_10
BrandVan den Brand, M.G.J., Jongde Jong, H.A., Klint, P., Olivier, P.: Efficient
annotated terms. Softw. Pract. Exp. 30, 259-291 (2000)

Brickenstein, M., Dreyer, A.: PolyBoRi: a framework for Grobner-basis compu-
tations with Boolean polynomials. J. Symb. Comput. 44(9), 1326-1345 (2009).
https://doi.org/10.1016/j.jsc.2008.02.017

Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. C-35(8), 677691 (1986)

Bryant, R.E.: Cloud-BDD: Distributed implementation of BDD package (2021).
https://github.com/rebryant /Cloud-BDD

. Coudert, O., Madre, J.C.: A unified framework for the formal verification of sequen-

tial circuits. In: 1990 IEEE International Conference on Computer-Aided Design.
Digest of Technical Papers, pp. 126-129 (1990). https://doi.org/10.1109/ICCAD.
1990.129859

Van Dijk, T., Van de Pol, J.: Sylvan: multi-core framework for decision diagrams.
Int. J. Softw. Tools Technol. Transf. 19, 675-696 (2016). https://doi.org/10.1007/
$10009-016-0433-2

Fujita, M., McGeer, P., Yang, J.Y.: Multi-terminal binary decision diagrams: an
efficient data structure for matrix representation. Formal Methods Syst. Des. 10,
149-169 (1997). https://doi.org/10.1023/A:1008647823331

Kam, T., Villa, T., Brayton, R.K., Alberto, L.S.V.: Multi-valued decision diagrams:
theory and applications. Multiple-Valued Log. 4(1), 9-62 (1998)

Kebschull, U., Rosenstiel, W.: Efficient graph-based computation and manipulation
of functional decision diagrams. In: European Conference on Design Automation
with the European Event in ASIC Design, pp. 278-282 (1993). https://doi.org/10.
1109/EDAC.1993.386463

Larsen, K.G., Weise, C., Yi, W., Pearson, J.: Clock difference diagrams. In: Nordic
Workshop on Programming Theory, Turku, Finland. Aalborg Universitetsforlag
(1998). https://doi.org/10.7146/brics.v5i46.19491

Meolic, R.: BiDDy - a multi-platform academic BDD package. J. Softw. 7, 1358—
1366 (2012). https://doi.org/10.4304/jsw.7.6.1358-1366

Miller, D., Thornton, M.: QMDD: a decision diagram structure for reversible and
quantum circuits. In: 36th International Symposium on Multiple-Valued Logic, pp.
30-36 (2006). https://doi.org/10.1109/ISMVL.2006.35

Minato, S.I.: Zero-suppressed BDDs for set manipulation in combinatorial prob-
lems. In: Proceedings of the 30th International Design Automation Conference,
pp. 272-277. DAC 1993, Association for Computing Machinery (1993). https://
doi.org/10.1145/157485.164890

Sanghavi, J.V., Ranjan, R.K., Brayton, R.K., Sangiovanni-Vincentelli, A.: High
performance BDD package by exploiting memory hierarchy. In: 33rd Design
Automation Conference (DAC), pp. 635-640. Association for Computing Machin-
ery (1996). https://doi.org/10.1145/240518.240638

https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/48529.48535
https://doi.org/10.1007/978-3-030-88885-5_10
https://doi.org/10.1016/j.jsc.2008.02.017
https://github.com/rebryant/Cloud-BDD
https://doi.org/10.1109/ICCAD.1990.129859
https://doi.org/10.1109/ICCAD.1990.129859
https://doi.org/10.1007/s10009-016-0433-2
https://doi.org/10.1007/s10009-016-0433-2
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.1109/EDAC.1993.386463
https://doi.org/10.1109/EDAC.1993.386463
https://doi.org/10.7146/brics.v5i46.19491
https://doi.org/10.4304/jsw.7.6.1358-1366
https://doi.org/10.1109/ISMVL.2006.35
https://doi.org/10.1145/157485.164890
https://doi.org/10.1145/157485.164890
https://doi.org/10.1145/240518.240638

17.

18.

19.

20.

21.

Adiar 1.1: Zero-Suppressed Decision Diagrams in External Memory 471

Sglvsten, S.C., Jakobsen, A.B.: SSoelvsten/bdd-benchmark: NASA formal meth-
ods 2023. Zenodo, September 2022. https://doi.org/10.5281/zenodo.7040263
Selvsten, S.C., van de Pol, J.: Adiar 1.1.0: experiment data. Zenodo, March 2023.
https://doi.org/10.5281/zenodo.7709134

Selvsten, S.C., de Pol, J., Jakobsen, A.B., Thomasen, M.W.B.: Adiar binary deci-
sion diagrams in external memory. In: TACAS 2022. LNCS, vol. 13244, pp. 295—
313. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99527-0_16
Somenzi, F.: CUDD: CU decision diagram package, 3.0. Technical report, Univer-
sity of Colorado at Boulder (2015)

Yoneda, T., Hatori, H., Takahara, A., Minato, S.: BDDs vs. zero-suppressed BDDs:
for CTL symbolic model checking of Petri nets. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 435-449. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0031826

https://doi.org/10.5281/zenodo.7040263
https://doi.org/10.5281/zenodo.7709134
https://doi.org/10.1007/978-3-030-99527-0_16
https://doi.org/10.1007/BFb0031826
https://doi.org/10.1007/BFb0031826

	Adiar 1.1
	1 Introduction
	2 Supporting both BDDs and ZDDs
	3 Evaluation
	3.1 Cost of Modularity
	3.2 Experimental Evaluation

	4 Conclusion and Future Work
	References

