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Abstract. Previous research on the Adiar BDD package has been suc-
cessful at designing algorithms capable of handling large Binary Decision
Diagrams (BDDs) stored in external memory. To do so, it uses con-
secutive sweeps through the BDDs to resolve computations. Yet, this
approach has kept algorithms for multi-variable quantification, the rela-
tional product, and variable reordering out of its scope.
In this work, we address this by introducing the nested sweeping frame-
work. Here, multiple concurrent sweeps pass information between each
other to compute the result. We have implemented the framework in
Adiar and used it to create a new external memory multi-variable quan-
tification algorithm. In practice, this improves Adiar’s running time by a
factor of 1.7. In turn, this work extends the previous research results on
Adiar to also apply to its quantification operation: compared to conven-
tional depth-first implementations, Adiar with nested sweeping is able
to solve more problems and/or solve them faster.

1 Introduction

The ability of Binary Decision Diagrams (BDDs) to represent Boolean formulae
as small directed acyclic graphs (DAGs) have made them an invaluable tool
to solve many complex problems. For example, recently they have been used
to check type-and-effect systems [35, 36], to generate proofs for SAT and QBF
solvers [14–16], for circuit synthesis [22, 32], to solve games [37, 45, 53], and for
symbolic model checking [3, 19, 20, 23, 26, 28, 34].

Implementations of decision diagrams conventionally make use of recursive
depth-first algorithms and a unique node table [10,21,29,33,40,52]. Both of these
introduce random access, which pauses the entire computation while missing
data is fetched [30,39,44]. For large enough instances, data has to reside on disk
and the resulting I/O-operations that ensue become the bottle-neck.

Adiar [49] is a BDD package written in C++ based on the ideas of Lars
Arge [5]: the depth-first recursive algorithms are replaced with iterative algo-
rithms. Here, one or more priority queues reorder the execution of recursive calls
such that they are synchronised with a level-by-level traversal of the inputs. This
makes Adiar’s algorithms, unlike the conventional recursive implementations, op-
timal in the I/O-model [1] of Aggarwal and Vitter [5, 6]. In turn, this enables
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it to manipulate BDDs beyond the reach of conventional BDD packages at a
negligible cost to its running time [49].

Yet, the ideas in [5,6,49] only provide a translation of the simplest BDD al-
gorithms. Specifically, it only provides a translation for operations without any
data-dependency on earlier recursive calls in each node in the BDD’s graph. This
does not provide a way to translate the more complex BDD algorithms that re-
curse on intermediate recursion results, e.g. multi-variable quantification. Hence,
until this work, Adiar could not easily be used for solving Quantified Boolean
formulæ (QBF). Furthermore, game solving and symbolic model checking has
until now been out of reach for Adiar.

1.1 Contributions

In Section 3, we introduce the notion of nested sweeping to provide a frame-
work on which these more complex BDD operations can be implemented. Here,
an outer bottom-up sweep accumulates the results from multiple nested in-
ner sweeps. With this framework in hand, we implement an I/O-efficient multi-
variable quantification akin to the one in conventional BDD packages. Further-
more, we identify in Section 3.2 optimisations for the nested sweeping frame-
work in general and in Section 3.3 for the quantification operation in particular.
Section 4 provides an overview of the implementation while Section 5 shows
that nested sweeping improves the running time in practice by a factor of 1.7
when solving QBF-encodings of two-player games and when reasoning about the
transition system in Conway’s Game of Life [24]. We compare our approach to
related work in Section 6 and finally provide our conclusions and future work in
Section 7.

2 Preliminaries

2.1 The I/O-Model

Aggarwal and Vitter introduced the I/O-model [1] to analyse the cost of trans-
ferring data to and from a slow storage device. Here, computations can only
operate on data that resides in internal memory, e.g. the RAM, with a finite
size of M . Hence, if the input of size N (or some intermediate result) exceeds M
then it needs to be transferred to and from external memory, e.g. the disk. Yet,
each such data transfer (I/O) moves an entire consecutive block of B elements;
an algorithm’s I/O-complexity is the number of I/Os it uses.

One needs scan(N) , N/B I/Os to linearly scan through a consecutive list
of N elements in external memory [1]. Assuming N > M , one needs to use
Θ(sort(N)) I/Os to sort N elements, where sort(N) , N/B · logM/B(N/B) [1].
Furthermore, one can design an I/O-efficient priority queue capable of doing
N insertions and deletions in Θ(sort(N)) I/Os [4]. For simplicity, we overload
scan(N) to be N and sort(N) to be N logN when referring to an algorithm’s
time complexity rather than its I/O complexity.
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x0

⊥ ⊤

(a) x0

x1

⊥ ⊤

(b) ¬x1

x0

x1

⊥ ⊤

(c) x0 ∨ ¬x1

Fig. 1: Examples of Reduced Ordered Binary Decision Diagrams. Terminals are
drawn as boxes surrounding their Boolean value. Internal nodes are drawn as
circles and contain their decision variable. Arcs to the high and low child are
respectively drawn solid and dashed.

Intuitively, an algorithm is I/O-inefficient if it uses an entire I/O to retrieve
a block but does not make use of a significant portion of the B elements within.
That is, random access can result in N I/Os. For all realistic values of N , M ,
and B, this is several magnitudes larger than both scan(N) and sort(N).

2.2 Binary Decision Diagrams

As shown in Fig. 1, a Binary Decision Diagram [13] (BDD) (based on [2, 31])
represents an n-ary Boolean function as a singly-rooted directed acyclic graph
(DAG). Each of its two sinks, refered to as terminals, contain one of the two
Boolean values, B = {⊤,⊥}. These represent the function’s output values. An
internal BDD node, v, is associated in v.var with a Boolean input variable xi.
Furthermore, it has two BDD nodes as children, v.low and v.high. These three
values in f encode the ternary if-then-else

v.var ? v.high : v.low .

What are colloquially referred to as BDDs are in fact Reduced Ordered Bi-
nary Decision Diagrams (ROBDDs). An Ordered BDD (OBDD) restricts each
variable to occur at most once on each path from the root to a terminal and
to occur according to a certain order, π. This gives rise to a levelisation of the
OBDD where each level, ℓ, is associated with an input variable, xi. For sake of
simplicity, we assume that π is the identity order. A Reduced OBDD further re-
stricts the DAG such that (1) no nodes are duplicates of another and (2) no node
is redundant, i.e. v.high = v.low. Assuming the variable ordering, π, is fixed,
ROBDDs are a unique canonical form of the Boolean function it represents.

Quantification Algorithm The levelisation of OBDDs allows the recursive
BDD algorithms to both be efficient and elegant. For example, the or operation
works by a product construction of the two input BDDs. Here, each node of the
output BDD simulates, according to π, the decision(s) taken on the shallowest
BDD node(s) in the product of nodes from the input.
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1 exists(v , X )
2 i f v = ⊥ ∨ v = ⊤
3 return v

4 ex i0 ← exists(v.low , X )
5 ex i1 ← exists(v.high , X )
6 i f v.var 6∈ X

7 return Node { v.var , ex i0 , ex i1 }
8 return or( exi0 , ex i1 )

Fig. 2: A recursive multi-variable exists operation.

Since (∃x : φ) ≡ φ[⊤/x]∨φ[⊥/x], the or operation can be used as the basis for
an existential quantification (∃) for a set of input variables,X = {xi, xj , . . . , xk}.
As shown in Fig. 2, if v is a terminal then this (sub)BDD depends on none of
the to be quantified variables. Otherwise, both its children are resolved recur-
sively into intermediate results, exi0 and exi1. If the decision variable of the
root, v.var, should not be quantified, a new node with variable v.var is created
from the two recursive results. Otherwise, exi0 and exi1 are instead combined
(recursively once more) with a nested or operation.

Similarly, one can implement a universal quantification (∀) by use of a nested
and operation. For clarity, our contributions in Section 3 are only phrased with
respect to the exists operation. But, everything that follows also applies to
forall by replacing or with and.

Relational Product The relational product computes the set of states after
taking a step in a transition system with the formula ∃~x : S(~x) ∧ R(~x, ~x′).
Hence, the support for a multi-variable quantification operation is key for the
application of BDDs in the context of symbolic model checking.

2.3 I/O-efficient BDD Manipulation

The Adiar [49] BDD package builds on top of Lars Arge’s ideas [5, 6] on how
to improve the I/O complexity of BDD manipulation. To not introduce random
access, Adiar does not use any hash tables nor recursion for its BDD manipula-
tion. As a result, different BDD objects do not share common subtrees in Adiar.
For the same reason, it neither uses pointers to traverse its BDDs. Instead, every
BDD node v is uniquely identified by a pair (v.var, v.id) where v.id is v’s index
on level v.var. Lexicographically, this unique identifier (uid) imposes a total
ordering of all BDD nodes into a levelised sequence of nodes. Here, the uid does
not specify exactly where to find a BDD node in the input but when to expect it
relative to the one currently read. For example, the BDD for x0 ∨¬x1 in Fig. 1c
is represented in Adiar as the list of nodes in Fig. 3a: every node is a 3-tuple
with its uid followed by the unique identifier of its low and its high children.

As depicted in Fig. 4, the previous BDD operations in Adiar, such as or,
process a BDD with two sweeps. Both sweeps use time-forward processing [4,18]
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[ {(0, 0), (1, 0),⊤}; {(1, 0),⊤,⊥} ]

(a) Node-based Representation

[ (0, 0) (1, 0); (1, 0) ⊥; (0, 0) ⊤; (1, 0) ⊤; ]

(b) Arc-based Representation

Fig. 3: Representation of the x0 ∨ ¬x1 BDD (Fig. 1c) in Adiar.

Apply Reduce
f nodes

g nodes

f ∨ g arcs
f ∨ g nodes

Fig. 4: The Apply–Reduce pipeline of or in Adiar.

to achieve their I/O-efficiency: computation is deferred with one or more priority
queues until all relevant data has been read. During the first sweep, the Apply, the
entire recursion tree is unfolded top-down. Here, the priority queues also double
as a computation cache [10,40] by merging separate paths to the same recursion
target. Hence, the resulting output is in fact not a tree but a DAG. Yet, it is only
an OBDD and needs to be reduced. To do so, Adiar uses an I/O-efficient variant
of the original bottom-up Reduce algorithm by Bryant [4, 13]. Here, a priority
queue is used to forward the uid of reduced nodes t′ in the final ROBDD to their
to be reduced parents s in the intermediate OBDD. Yet, to know the parents s,
the Reduce needs the intermediate OBDD to be transposed, i.e. the DAG’s edges
to be reversed. Luckily, the Apply sweep outputs its OBDD transposed and so
no extra work is needed [5,49]. For example, the or of Fig. 1a and Fig. 1b creates
the arc-based representation in Fig. 3b. Here, the arcs (directed edges) end up
sorted by their target. For all intents and purposes, this is a transposition of the
DAG. This can then be reduced into the node-based representation in Fig. 3a.

The I/O and time complexity of this Apply–Reduce tandem is

O(sort(N + T )) ,

where N is the size of the input(s) and T is the size of the unreduced output of
the Apply sweep [49].

To catch up with conventional implementation’s performance, major efforts
have been dedicated to improve on this foundational design.

Levelised Cuts [51] The arcs placed in the above-mentioned priority queues
correspond to cuts in the (R)OBDDs. These cuts have a particular shape that fol-
lows its levelisation. Hence, the maximum size of the priority queues is bounded
by (heuristic over-approximations of) the maximum levelised cut in the input.

These sound upper bounds on the priority queues’ size can in turn be used
to determine a priori whether one can use a priority queue that is much faster
but only works in internal memory.

In practice, this improves performance for smaller and moderate instances.
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Levelised Random Access [50] Orthogonally, a product construction’s Apply
sweep, e.g. an or, can be simplified if one of its inputs is narrow, i.e. each level
fits into internal memory. In this case, one can load each level in its entirety into
internal memory. Doing so, provides random access to all of its nodes on said
level making one of the Apply’s two priority queues in [49] obsolete.

In practice, this improves performance for larger instances.

3 I/O-efficient Multi-variable Quantification

The work in [49] only covers simple BDD operations without any data-dependencies
in its recursion, e.g. the or. Yet, this does not cover the exists in Fig. 2, where
the nested call to or on line 8 depends on the recursions from lines 4 and 5.

To address this, we introduce the nested sweeping framework. As shown in
Figs. 5 and 6, this wraps the algorithm(s) depicted in Fig. 4: after transposing
the input in an initial Apply sweep, a single outer Reduce sweep accumulates the
result of multiple inner Apply–Reduce sweeps. More precisely, nested sweeping
consists of the following four phases.

Outer Apply: As shown in Fig. 7, inputs are combined (and possibly manipu-
lated) in an Apply sweep into a single file, Fouter . This transposes and merges
the inputs such that they are of the form needed by the Reduce of [49].

Apply

Qouter:↓

Reduce

Qouter:↑
f

Fouter F ′
outer

∃~x : f

Apply

Qinner:↓

Reduce

Qinner:↑

Finner

F ′
inner

Fig. 5: The Apply–Reduce pipeline of exists with Nested Sweeping.

xj

xi

Apply

Qouter:↓

Reduce

Qouter:↑

Apply

Qinner:↓

Reduce

Qinner:↑

Apply

Qinner:↓

Reduce

Qinner:↑

Fig. 6: Sweep direction (solid/dashed) and control-flow (dotted) of Nested Sweep-
ing. The y-axis corresponds to the levels within the BDD.
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◦

◦

◦◦

⊙

◦

◦ ◦

◦ ◦ ◦

⇒

◦

◦

◦

◦ ◦

◦ ◦

Fig. 7: Outer Apply one (or more) input BDD(s) are processed in a top-down
sweep to create a single transposed BDD.

In the case of exists, this could be a simple transposition of f . In Sec-
tion 3.3, we describe how this phase can do double duty to process some of the
quantifications. In the case of the relational product, the conjunction of states
and relation can be computed as part of this phase.

Outer Reduce: As in [49], each level of Fouter is reduced bottom-up by having
a priority queue, Qouter :↑, forward the information about reduced nodes, t′, to
their unreduced parents, s. The reduced output is pushed into a new file, F ′

outer
.

Let xj be the next level that needs a nested sweep. For exists, xj is the
largest still to be quantified variable in X . As visualised in Fig. 8, the logic of [49]
is extended as follows:

1. If the current level is xj , each arc s t′ to a reduced node t′ at this level is
turned into a request and placed in a second priority queue, Qinner :↓.
For exists, the requests are of the form s (t′.low, t′.high).

2. If the current level is deeper than xj , nodes are reduced as in [49] with a
caveat: whether the arc s t′ to the reduced node t′ is placed in Qouter :↑

or in Qinner :↓ depends on the level of the unreduced parent s as follows:
(a) If xj ≤ s.var, i.e. s is as deep or deeper than level xj , then s t′ is

placed in Qouter :↑ as normal.
(b) Otherwise, i.e. if s.var < xj , s t′ is placed in Qinner :↓ instead.

For exists, Case 1 matches the invocation of or on line 8 of Fig. 2 whereas 2
is the return with an unquantified variable on line 7.

When level xj has finished processing, Qinner :↓ is populated with all requests
that span across level xj . Now, the inner Apply sweep is invoked.

Inner Apply: As depicted in Fig. 9a, starting with the requests in Qinner :↓, the
reduced nodes, t′, placed in F ′

outer
by the outer Reduce sweep, are processed

with an Apply sweep from [49]. The intermediate unreduced result is placed in
a new file, Finner .

For exists, this sweep is the execution of the or on line 8 of Fig. 2. Here,
one can use the previous top-down algorithms from [49].
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xj

t′

s

s

s

t′

s

t′

◦ ◦

Fig. 8: Outer Reduce: solid arcs stay in Qouter :↑ (Case 2a) while dashed arcs are
turned into requests for Qinner :↓ (Cases 2b on the left and 1 on the right).

xj

xi

◦

◦

◦

·

◦◦

(a) Inner Apply: starting with root re-
quests (dashed), Finner is constructed
with the to-be preserved subtrees (left)
together with new nodes that are prod-
ucts of previous ones (right).

xj

xi

s

t′′
s

t′′

s

t′′

(b) Inner Reduce: arcs below xj stay
within the inner sweep (Case 1, solid).
Arcs that cross xj are given back to the
outer (Case 2, dashed) or to the next in-
ner sweep (Case 3, dash dotted).

Fig. 9: Visualization of the Inner Apply and the Inner Reduce.

Inner Reduce: After the inner Apply sweep, Finner is reduced in another bottom-
up Reduce sweep of [49]. This creates the reduced nodes t′′ placed in F ′

inner
. Let

xi be the next level above xj that also needs a nested sweep. For exists, xi is
the largest variable smaller than xj that also needs to be quantified. The arc
s t′′ is placed in a priority queue, Qinner :↑, as follows.

1. If xj < s.var, i.e. the parent s is below level xj , then s t′′ is forwarded
within this inner Reduce sweep’s priority queue, Qinner :↑.

2. If s.var ∈ [xi, xj ], i.e. the parent s is between level xi and xj then s t′′ is
given back to the outer sweep, Qouter :↑. This matches Case 2a in the Outer
Reduce.

3. If s.var < xi, i.e. the parent s is above xi, then s t′′ is placed into Qinner :↓

to prepare the next invocation of an inner Apply sweep. This matches Case 2b
in the Outer Reduce.
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The three cases above are depicted in Fig. 9b. For exists, Cases 2 and 3 are
equivalent to the return from or back to exists. Case 1 is equivalent to a return
statement within the or’s own recursion. Case 3 is needed to match 2b with xj

replaced with xi.
Finally, F ′

inner
replaces F ′

outer
and control returns to the outer Reduce sweep

to proceed with the levels above xj .

Finner from the inner Apply sweep can be thought of as overlayed on top of Fouter

from the outer Apply sweep; together they produce a valid (but unreduced)
OBDD. The Outer and inner Reduce sweeps work together to reduce this into a
single file, F ′

outer
. When no more levels, xj , need to be processed and the outer

Reduce sweep has finished processing, then F ′
outer

contains the final reduced
BDD of all nested operations.

Whereas the Apply–Reduce algorithms in [49] only operate on a singly-rooted
DAG, the inner Apply and Reduce sweeps have to operate on a multi-rooted one.
Yet, these previous algorithms need not be changed since Qinner :↓ is prepopu-
lated with all relevant roots in Cases 1 and 2b in the outer and Case 3 in the
inner Reduce sweeps.

Since the result of the inner Apply and Reduce sweeps replaces the entire set
of nodes in F ′

outer
, the priority queue Qinner :↓ not only needs to be populated

with requests for the nodes that need to be changed but also with requests for
the nodes one wishes to keep (see also Fig. 9a). This makes the inner Apply
sweep not only compute the desired result but also act as a mark-and-sweep
garbage collection. On the first glance, these additional non-modifying requests
may seem too costly – especially if most requests do not modify subtrees. In
practice, 33.3% of all requests created throughout our benchmarks (see Section 5
for a detailed presentation thereof) are subtree modifying. For each benchmark
instance, 23.0% of all requests modify subtrees on average (median 35.6%). That
is, a reasonable number of all requests (and hence BDD nodes processed) change
the subgraph in F ′

outer
.

3.1 Complexity of Nested Sweeping

As mentioned in the description of the outer Apply sweep, nested sweeping works
for multiple inputs. In this work, it suffices to assume it only has to deal with a
single BDD f of N nodes as also depicted in Fig. 5.

Lemma 1. A single BDD f with N nodes can be transposed in Θ(sort(N)) I/Os
and time and Θ(N) space.

Proof. In Θ(scan(N)) I/Os and time iterate over and split all nodes v in-order
into the two arcs v.uid v.low and v.uid v.high. Sort these 2N arcs on
their target using Θ(sort(N)) I/Os and time and linear space transposes them.

In Section 3.3, we propose to embed valuable computations inside of the outer
Apply sweep. This comes at the cost of potentially changing the BDD size. To
encapsulate such cases too, let N ′ be the output size of the outer Apply sweep
which may exceed O(N). Yet, this step is not the bottle-neck of the algorithm.
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Lemma 2. Ignoring the work done within the inner sweeps, the outer Reduce
sweep costs Θ(sort(N ′)) I/Os and time and requires O(N ′) space.

Proof. This follows from the complexity of the Reduce algorithm in [49] (based
on [6]) and the constant extra time spent for each of the N ′ nodes to resolve the
additional logic in Cases 1 and 2 of the outer Reduce sweep.

By combining Lemmas 1 and 2 together with the fact that the last invoca-
tion of the inner Apply and Reduce sweeps constructs, together with the outer
Reduce sweep, the output of size T , we obtain the following lower bound on the
complexity of nested sweeping.

Corollary 1. Nested Sweeping uses Ω(N + T ) space and Ω(sort(N + T )) time
and I/Os where N and T are the size of the input and output, respectively.

In particular for the exists BDD operation, let Tj be the size of F
′
outer

when
the inner Apply sweep is invoked at level xj .

Lemma 3. A single invocation of the inner Apply and Reduce sweeps at xj costs
Θ(sort(N ′ + T 2

j )) I/Os and time and uses O(N ′ + T 2
j ) space.

Proof. As in [49], the algorithm’s complexity depends on the number of elements
placed in the priority queues [4]. In particular, a single nested or sweep deals
with up to 2N ′ arcs from Fouter . On top of these, it also processes up to 2T 2

j

arcs created during the product construction of F ′
outer

.

Since nested sweeping closely simulates the (parallelised) recursive BDD algo-
rithm in Fig. 2, one should expect it achieves, similar to the algorithms in [49],
major improvements in the number of I/Os at the cost of a log-factor in the
running time when compared to the conventional recursive algorithms. This is
indeed the case.

Proposition 1. Quantification of a set of variables, X, is computable with

nested sweeping in O(sort(N2|X|

)) I/Os and time and O(N2|X|

) space.

Proof. Due to Lemma 1, Fouter from the outer Apply sweep has up to 2N arcs.
This is also the size of F ′

outer
without any inner sweeps. Each inner Apply and

Reduce sweep may increase the size of F ′
outer

quadratically. The result follows
from Lemmas 1 to 3.

Asymptotically, this is not an improvement over just quantifying each vari-
able one-by-one using the algorithm already proposed in the full version of [49].
Yet, doing so would involve 2|X | sweeps over all levels of the input whereas, as
highlighted in Fig. 6, nested sweeping only processes levels below each quantified
variable. This difference is also evident in practice: throughout our benchmarks
(see Section 5 for details), when quantifying with nested sweeping rather than
each variable independently, the total number of requests processed with the
or operation decreases by 13.9% while the share of 2-ary product constructions
increases from 57.3% to 66.6%.
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3.2 Optimisations for Nested Sweeping

While nested sweeping as described above is an improvement over previous work
in [49], there are multiple avenues to further improve its performance in practice.

Terminal Arcs: No inner Apply sweep changes the value of terminals. Hence,
requests of the form s ⊤ and s ⊥ can be forwarded to s regardless of any
nesting levels, xj , in-between. Furthermore, the request based on t′ in the outer
Reduce sweep may trivially resolve into a terminal. In this case, the resulting
terminal can be forwarded to its parents (regardless of their level). For exists,
this would be if both t′.low and t′.high are terminals or either of them is the ⊤
terminal.

This decreases the size of Qinner :↓. Furthermore, it makes the requests placed
in Qinner :↓ compatible with an implicit invariant of the Apply sweep’s in [49].

In practice, the number of requests skipped this way depends on the use-case
and the scale. 3.7% of all requests processed as part of our benchmarks (see
Section 5 for a description) are for terminals. On average, 6.9% of the requests
(with a median of 7.0%) are for terminals in each benchmark. For the Garden
of Eden (GoE) benchmark specifically, 15.3% of all requests are terminals on
average (median 17.7%). On the other hand for the Quantified Boolean Formula
(QBF) benchmark, only 5.0% (median 5.9%) of them were.

Bail-out of Inner Sweep: There is no need for the outer Reduce sweep to
invoke the inner sweeps if Qinner :↓ only contains requests that preserve subtrees,
i.e. if Case 1 in the Outer Reduce did not create any requests that manipulate
the accumulated OBDD in F ′

outer
. On level xj , such requests can stem from

a redundant node t′ being suppressed. For exists, this may also occur due
to either t′.low or t′.high being the ⊥ terminal, which is neutral for the or

operation, or being ⊤, which is short-circuiting it.
In this case, the entire content of Qinner :↓ can be redistributed between

Qouter :↑ and Qinner :↓ for the next deepest to be quantified level, xi. After doing
so, the outer Reduce sweep can immediately proceed processing the next level.

For exists, any short-circuiting by the or operation in Case 1 of the outer
Reduce sweep can kill off some subtrees in F ′

outer
. In this case, one cannot skip

the last invocation of the inner sweeps. Otherwise, the final result F ′
outer

could
include dead nodes. Yet, even so, one can instead of the expensive top-down
algorithm, e.g. or for exists, invoke the inner Apply sweep with a much simpler
(and therefore faster) mark-and-sweep algorithm.

In practice, 75.6% of all nested sweeps in our benchmarks (see Section 5 for
their presentation) are skippable. For each benchmark, between 6.8% and 93.5%
of all nested computations were skipped with an average of 59.2% (median of
81.0%). The number of nested levels depends on the problem domain and its
instance. For the Garden of Eden (GoE) benchmark, only 26.8% of all nested
computations were skipped on average (median 29.0%), whereas 82.7% (median
84.3%) of all levels of the Quantified Boolean Formulas (QBFs) could be skipped.
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Root Requests Sorter: Instead of making the outer Reduce sweep push re-
quests directly into Qinner :↓, it can push it into an intermediate list of requests,
Louter:↓. The content of Louter:↓ is sorted using the same ordering as Qinner :↓ as
the inner Apply sweep is invoked, to then merge it on the fly with theinner Ap-
ply sweep’s priority queue. This allows one to postpone initialising this priority
queu until the inner Apply sweep is invoked. This has multiple benefits:

– Qinner :↓, resp. Qinner :↑, only exists and uses internal memory during the
inner Apply sweep, resp. the inner Reduce sweep. Hence, the memory oth-
erwise dedicated to Qinner :↓ can be used in the outer Reduce sweep for the
Reduce’s per-level data structures in [49]. Furthermore, this also increases
the amount of space available to the inner Reduce sweep. Hence, this ought
to improve the running time of both the inner and the outer Reduce sweeps.

– In practice, sorting a list of elements once is significantly faster than main-
taining an order in a priority queue [41]. Merging Louter:↓ on the fly with
Qinner :↓ is faster than passing requests to the inner sweep’s priority queue.

– If Qinner :↓, resp. Qinner :↑, is initialised for each inner Apply sweep, resp.
inner Reduce sweep, then the monotonic and faster levelised priority queue
in the full version of [49] can be used instead of a regular non-monotonic
priority queue.

– Levelised cuts [51] bound the size of each individual inner Apply and Reduce
sweep. Hence, for each nested sweep, one can, if it is safe to do so, replace
Qinner :↓ and/or Qinner :↑ with a faster internal memory variant.

– Levelised random access [50] may need to change the sorting predicate in
Qinner :↓. Hence, Louter:↓ allows this optimisation to be applied for each in-
vocation of the inner Apply sweep depending on the width of F ′

outer
.

Furthermore, levelised cuts not only bound the size of Qouter:↑ in the outer
Reduce sweep but also the size of Louter :↓. Hence, while deciding whetherQouter :↑

fits into memory, one can also decide whether Louter :↓ does.
All in all, this allows the optimisations in [50, 51] to be applied on a sweep-

by-sweep basis. In practice, if one neither uses faster internal memory variants
of Qinner :↓ and Qinner :↑ nor levelised random access, then Adiar needs a total
of 32.1 h to solve 145 out of the 147 benchmarks in Section 5. Using these two
optimisations shaves 13.0 h off the total computation time (speedup of 1.68). For
each individual instance, this improves Adiar’s performance between a factor of
1.07 and 5.05 (1.77 on average)1. Furthermore, without Louter:↓, the exponen-
tial blow-up in Proposition 1 implies Qinner :↓ would almost always have to use
external memory. As the optimisations in [49–51] would then not be applicable,
one would expect a slowdown of several orders of magnitude similar to [50, 51].

1 Compared to [51], the external memory sorters in this comparison still use the lev-
elised cuts to circumvent wasting time with initialising too much internal memory.
This is why, there is not a speedup of several orders of magnitude. If this use of
levelised cuts is also reverted to obtain its state back in [49], then preliminary exper-
iments on a machine with 8 GiB of memory exhibits a speedup of 2.71 on average. As
memory increases, one should expect a difference similar to the one reported in [51]
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xi

α ⊤

⇒

⊤

(a) Pruning due to ⊤.

xi

α ⊥

⇒

α

(b) Skipping node due ⊥.

Fig. 10: Example of pruning quantification of a to-be quantified level xi.

3.3 Optimisations for Quantification

As presented above, the outer Apply sweep merely transposes the input BDD
f . Yet, doing so may not make the most out of having to touch the entire
BDD graph; as long as the result is a transposed BDD for, one can incorporate
additional computations inside of this sweep. Hence, we now explore possible
top-down sweeps that can be used instead of the algorithm in Lemma 1.

Pruning ⊤ Siblings: Corollary 1 and Proposition 1 show a possibly wide
gap in the potential performance of the nested exists algorithm. Lemma 3
shows this stems from the possibility of some partially quantified result explodes
exponentially in size. Yet, Tj can only be larger than T if it contains subtrees
that will be pruned or merged later when another variable is quantified. This
can only happen due to the ⊤ terminal shortcutting an or. Hence, to be closer
to the lower bound in Corollary 1, we need to identify redundant computation
by pushing information about the ⊤ terminal down through the BDD of f .

As shown in Fig. 10a, one can collapse to be quantified nodes at a level xi

if one of their children is the ⊤ terminal. Similarly, as shown in Fig. 10b, one
can skip over nodes with a ⊥ terminal as its child. This can be done as part of
a simple top-down sweep similar to the Restrict in the full version of [49].

In the worst-case, this does not apply to any node in f and so the output
is similar to the algorithm in Lemma 1. Our preliminary experiments indicate
this approach introduces an overhead of up to 2%. Yet, if nodes are prunable,
making N ′ < N , then total performance can improve with up to 21%.

Deepest Variable Quantification: The single-variable quantification in the
full version of [49] can also be used to transpose f . This removes one of the
to be quantified variables xi ∈ X in O(sort(N2)) I/Os and time and O(N2)
space. The resulting transposed graph, Fouter , has size N ′ ≤ N2. To not change
the overall memory usage, one can choose xi to be the largest to be quantified
variable. Doing so makes the levels at xi and below equivalent to Finner after
the first inner Apply and Reduce sweep. That is, N ′ ≤ N + Ti and one saves an
entire nested sweep at no cost to memory usage.

Our preliminary experiments indicate this only slows down computation time
on average by 4.7%. We hypothesise this is due to the deepest variable xi is often
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close to the bottom of the BDD and so, this sweep is primarily transposing the
graph with more complex logic.

One can also incorporate the above pruning of ⊤ siblings inside this quantifi-
cation sweep. This improves performance for applicable cases. But, it does not
offset the additional overhead in the remaining cases.

Partial Quantification: The single-variable quantification in the full version
of [49] can be generalised to partially resolve all xi ∈ X in a single sweep. The
requests in [49] are for pairs of nodes (t1, t2) ∈ f × f .

Without loss of generality, assume t1.var = t2.var = xi ∈ X . In this case, the
2-ary product construction should turn into (t1.low, t1.high, t2.low, t2.high). If
any of these four uids are the ⊤ terminal then the entire request can immediately
be resolved to ⊤. Furthermore, any ⊥ terminal is neutral to the or operation and
can be pruned from the 4-tuple. Similarly, any duplicate uids can be merged.
Since or is commutative, one can sort the 4-tuple to quickly identify these cases.
If the resulting tuple has 2 or fewer entries remaining, the product construction
can proceed as in the full version of [49] (Fig. 11a). Otherwise, a new node with
xi is created with the result of each half of the 4-tuple as its children (Fig. 11b).
Inductively, this is correct (after later quantification of the new xi node and its
subtrees) as the or operation is associative.

The resulting DAG is a 2-ary product construction of f , and so Fouter has
size N ′ ≤ N2. As per [49], this single sweep is computable in O(sort(N2)) I/Os
and time and O(N2) space.

Similar to the two ⊤ terminal pruning above, partial quantification prunes
shortcutted subtrees across all levels of f . Furthermore, similar to deepest quan-
tification, it leaves at least one fewer levels of to be quantified variables to be
processed later.

Our preliminary experiments indicate, partial quantification can in practice
improve performance up to 61%. Yet, many other intances slow down just as
much (up to 115%, i.e. also a bit more than a factor of two). We hypothesise
this is due to partial quantification pairing nodes with a conflicting assignment.
For example, in Fig. 11b α is paired with β rather than γ. Oddly enough, in
our preliminary experiments, the instances that were improved by ⊤ pruning

xi xi

⊥ α β

⇒

α× β

(a) Fully quantified pair of nodes

xi

α ⊥

xi

γ β

⇒ xi

α× β γ

(b) Partially quantified pair of nodes

Fig. 11: Example of partial quantification of a level xi.
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are disjoint from the ones improved by partial quantification. Further research
is needed to investigate why and when partial quantification is useful.

Repeated Partial Quantification: The top-down sweep aboves produces a
transposed and unreduced OBDD. Yet, it is in practice possible thatN ′ is smaller
than (1 + ǫ) ·N for some ǫ ∈ Q, i.e. its size has not grown considerable. In this
case, the resulting product construction has very few new BDD nodes that are
potentially reducible. Hence, it may be more beneficial to untranspose the OBDD
and then immediately rerun another transposing top-down sweep. Doing so with
pruning or partial quantification can propagate the ⊤ terminal further and so
prune more subtrees. Yet, it is unlikely that pruning ⊤ terminals in Fig. 10a
makes said terminal available for another to be quantified variable. That is, it is
unlikely in this case that a second sweep would further prune subtrees. Hence,
this is most promising to do with partial quantification.

Since there are very few new BDD nodes, it is unlikely that the Reduce sweep
of [49] will do much more than just untranspose the DAG. Hence, one would want
to untranspose it with a simpler and faster algorithm. As can be seen in Fig. 3,
one can instead merely sort all arcs on their source and then merge them on
the fly into nodes. Asymptotically, this is still a Θ(sort(N ′)) operation. But, the
constant involved is smaller than the Reduce of [49].

Hence, one can repeat the above partial quantification operation until N ′ ex-
ceeds (1+ǫ)·N , it has run δ times, or there are no more to be quantified variables
left in Fouter . In practice, we have not yet found any instance where more than
a single quantification sweep further improves performance. Hence, as further
research hopefully uncovers when it is beneficial to use partial quantification, we
can extrapolate this into a value of δ.

4 Implementation of Nested Sweeping in Adiar

Most of the logic in Section 3 can be implemented by wrapping the priority
queues Qouter:↑, Qinner :↓, and Qinner :↑ and Louter :↓ with additional logic on how
to merge and whereto split requests.

– The logic of whether to push to Qouter :↑ or Louter:↓ in the outer Reduce
sweep, resp. Cases 2 and 3 in the inner Reduce sweep, is a conditional on
level xj , resp. xi.

– During the inner Apply sweep, requests from Louter:↓ are merged on the fly
with the ones pushed to Qinner :↓.

– When placing requests in Louter:↓, they are marked as originating from the
outer Reduce sweep. During the inner Reduce sweep, requests are forwarded
to Qouter:↑ or Qinner :↑ depending on whether they are marked to be from
the outer sweep or not.

This has been implemented in Adiar v2.0 with (compile-time known) decorators :
a class with the same interface as the priority queues runs the above logic before
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passing it onto the wrapped priority queues and sorters. This makes the logic of
each sweep agnostic to and reusable in the context of nested sweeping.

The nested sweeping framework, i.e. the decorators, Louter :↓, and the algo-
rithm and its optimisations, has been implemented with 1287 lines of templated
C++ classes and functions. Similar to [48, 51], the use of templates completely
remove any indirection and abstraction introduced for the sake of code quality.
The entire framework has been tested separately from the remaining codebase
with 104 unit tests. The quantification algorithms themselves grew from 548
lines of code and 84 unit tests to 1152 lines of code and 152 unit tests (without
any of the optimisations in Section 3.3).

5 Experimental Evaluation

To evaluate the impact of using nested sweeping, we have run experiments aiming
at answering the following three research questions:

1. How does nested sweeping compare to the repeated use of the single-variable
quantification from the full version of [49]?

2. How does Adiar with nested sweeping compare to the external memory BDD
package, CAL [46]?

3. How does Adiar with nested sweeping compare to conventional BDD pack-
ages that use depth-first recursion and memoisation [9, 21, 27, 33, 52]?

5.1 Benchmarks

For this evaluation, we have implemented the following two benchmarks that
rely on multi-variable quantification. Similar to [48, 49], all benchmarks have
been implemented on top of C++-templated adapters for each BDD package.
This makes each BDD package run the exact same set of operations without
introducing any indirection. The source code for all benchmarks can be found
at the following url:

github.com/ssoelvsten/bdd-benchmark

QBF Solving: Given a Quantified Boolean Formula (QBF) in the QCIR [54]
format, each gate of the given circuit is recursively transformed into a BDD.
For inputs, we use the 102 encodings from [47] of 2-player games on a grid. In
our experience, the symbolic style of these inputs makes them well suited to be
solved with BDDs. Hence, they provide a typical use-case of quantification in
BDDs. Furthermore, though these inputs are not in CNF they are in prenex form.
In practice, resolving these prenex quantifications at the end is computationally
much more expensive than computing the to be quantified circuit, i.e. the matrix.

Based on preliminary experiments, we use a variable order based on a depth-
first traversal of the given circuit. In the prenex, we merge adjacent blocks with
the same quantifier to increase the number of concurrently quantified variables.

https://github.com/ssoelvsten/bdd-benchmark
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Garden-of-Eden: In a cellular automaton, a Garden-of-Eden [42] (GoE) is
any configuration without a predecessor. In Conway’s Game of Life [24], recent
results show there exists no GoE of size 8 × 8 or smaller [8]. Hence, the BDD
for an nr × nc ≤ 8× 8 sized transition relation will collapse to ⊤ when all of its
previous state variables are existentially quantified. Yet, a row-major encoding
of the transition relation requires only a polynomially sized BDD. Hence, the
complexity of this problem manifests as an explosion of the BDD’s size during
the existential quantification.

The transition relation on a grid of size nr×nc is encoded with (nr+2)·(nc+2)

previous state variables, ~x, and (up to) nr ·nc next state variables, ~x′. By reusing
next state variables for multiple cells, one can restrict the search for symmetric
GoEs. Post state variables, x′

i ∈ ~x′, follow a row-major order. Previous state
variables, xi ∈ ~x, are interleaved to directly preceede their respective post state
variable, x′

i.

5.2 Hardware and Settings

As in [48–51], we have run our experiments on the Grendel cluster at the Centre
for Scientific Computing Aarhus. In particular, we ran both benchmarks on
machines with 48-core 3.0 GHz Intel Xeon Gold 6248R processors, 384 GiB of
RAM, 3.5 TiB of SSD disk, and run Rocky Linux (Kernel 4.18.0-513). All code
was compiled with GCC 10.1.0 or rustc 1.72.1. Each BDD package was given
9
10 th of the available RAM, i.e. 345 GiB, leaving 1

10 th to other data structures
and the operating system. Next to that, the BDD packages use a single thread
and their default/recommended settings.

Note that these machines have vasts amounts of memory. This is to ensure
that depth-first implementations are not slowed down by external factors. If less
memory is available, then depth-first implementations would have to run multi-
ple garbage collections to stay within the memory limits (cf. the largest instances
solved by BuDDy [33] in Fig. 14a). This, in turn, clears their memoisation tables
and forces them to recompute previous results. Furthermore, this large amount
of memory ensures they can solve larger problems without using the swap par-
tition. If they had to use it then they would slow down by about two orders
of magnitude (see the full paper of [49] for an example). Hence, machines of
this scale allow us to measure the algorithms’ running time without the noise
otherwise introduced by their execution environment. Finally, this biases the
running time in favour of the depth-first implementations, which in turn makes
the numbers we report on Adiar’s relative performance close to the worst-case.

5.3 Experimental Results

The computing cluster’s scheduler does not let many long-running jobs run
concurrently. To obtain all 1176 data points reported below within only a few
months, we had to place each of the 147 instances in buckets of instances with
a common timeout. In particular, an instance is placed in the bucket with the
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Fig. 12: Relative time (Told/Tnew) of quantification with nested sweeping (Tnew)
compared to the previous repeated single-variable quantification (Told).

smallest timeout that is four times larger than Adiar needed during preliminary
experiments. That is, a BDD package timing out should only be understood as
it (possibly) being considerably slower than Adiar.

Depending on an instance bucket placement, running time measurements
were made 1 to 3 times. Due to node failures on the cluster, Adiar with nested
sweeping was run once more, resulting in its measurements being repeated on
many instances 4 times. On average, all data points had 3.0 measurements.
Similar to [48,49,51], we report for each benchmark the minimum time recorded
as it is the measurement with the least noise [17]. Average ratios are aggregated
using the geometric mean.

Adiar needs less than 1 s to solve 27 out of the 45 GoE instances, resp. 50
out of the 102 QBF instances. As will become evident later with Figs. 13 and 14,
this makes them so small that they are not within the current scope of Adiar.
For completeness, we still show and discuss these results.

RQ 1: Improvement by Nested Sweeping Figure 12 shows the speed-up
of using Adiar with nested sweeping (without any optimisations in Section 3.3)
relative to quantifying each variable individually. Across all instance sizes, nested
sweeping is in general an improvement in performance. We have recorded a
slowdown of up a factor of 1.05 for 5 instances. Yet, we also recorded speed-ups
up to a factor of 5.88 for the 142 remaining instances. On average, performance
improves by a factor of 1.7 for both QBF and GoE. The total computation time
was decreased by 21% from 49.4 h to 39.1 h.

RQ 2: Comparison to CAL To the best of our knowledge, CAL [46] (based on
[7,43]) is the only other BDD package also designed to manipulate BDDs larger
than main memory. To do so, it uses breadth-first algorithms that should work
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Table 1: Time taken and the average ratio between Adiar and CAL for the
124 commonly solved instances. The average (geometric mean) pertains only to
instances where Adiar needed at least 1 s to solve them. Ratios larger than 1.00
means Adiar is faster.

Time # Solved Avg. Ratio (1+s)

GoE QBF GoE QBF GoE QBF

Adiar 7431.9s 688.0s 45 102 – –

CAL 184688.3s 295660.0s 38 86 5.0 25.2
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Fig. 13: Relative performance (TCAL/TAdiar) of CAL (TCAL) compared to Adiar
with Nested Sweeping (TAdiar). Time-/Memouts are marked as crosses.

well with BDDs stored on disk via the operating system’s swap memory [46].
CAL also includes algorithms to support multi-variable quantification [46]. For
more details, see [46] and Section 6. The machines for our experiments provide
a 48 GiB swap partition, i.e. a 12.5% increase in available space.

Preliminary experiments indicated CAL’s breadth-first algorithms are much
slower than Adiar’s time-forward processing. Hence, we multiplied the timeout
for CAL by a factor of 3. But as is evident in Fig. 13, this increase turned out
to still overestimate CAL’s performance on larger instances. Hence, the running
times and averages in Fig. 13 and Table 1 pertain only to the 124 instances
which CAL can solve within the given RAM, SWAP, and the time limits.

Even though this discards the instances where CAL struggles, i.e. the data
points that remain are in CAL’s favour, Fig. 13 shows Adiar heavily outperforms
CAL for instances where Adiar takes 1 s or longer to solve. Where CAL uses
133.4 h to solve 124 instances, Adiar, by solving them in only 2.3 h, is 59.1
times faster. On these larger instances, CAL is on average 14.7 times slower
than Adiar. As is evident in Fig. 13 and Table 1, Adiar especially outperforms
CAL on the QBF benchmark. For example, the largest difference was measured
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for the hex/hein 15 5x5-13 QBF instance, where CAL is 1081 times slower
than the 71.2 s Adiar needs to solve it.

On the other hand, CAL is considerably faster for the instances where Adiar
takes less than 1 s to solve. At this smaller scale, CAL primarily uses conventional
depth-first algorithms; doing the same for Adiar is still left as future work [50,51].

RQ 3: Comparison to Depth-First Implementations For this compar-
ison, we have compared performance with BuDDy 2.4 [33], CUDD 3.0.0 [52],
LibBDD 0.5 [9], OxiDD 0.6 [27], and Sylvan 1.8.1 [21]. Their individual perfor-
mance relative to Adiar is shown in Fig. 14. Out of the 147 instances, 140 are
solved by all depth-first BDD packages, i.e. the remaining 7 instances have at
least one BDD package running out of memory (MO) or time (TO). Adiar solves
all of them. Running out of time is most likely due to repeated need for garbage
collection, which essentially is equivalent to an MO. Yet for fairness, Table 2
shows the total time for these 140 commonly solved instances. The average ra-
tio, on the other hand, pertains to all instances solved by the respective BDD
package.

As shown in Table 2, Adiar solves the 40 common GoE instances in 2.7 h.
This makes it 1.13 times faster than CUDD and 2.20 times faster than OxiDD
at solving all benchmarks. Adiar further solves the 100 common QBF instances
in 1.25 h. This makes it as fast as CUDD and 1.3 times faster than Sylvan at
solving these QBF instances.

The relative running time of BuDDy in Fig. 14a and OxiDD in Fig. 14d
shows that Adiar’s performance can be divided into three categories: the small
instances that takes Adiar less than 1 s to solve but is out of its (current) scope,
the medium instances where Adiar needs between 1 and 103 s to solve and it is up
to a constant factor of 4 slower than other BDD packages, and the large instances
beyond 103 s where other BDD packages slow down compared to Adiar due to
limited internal memory and repeated garbage collection. While the distinction
is not as clear for CUDD in Fig. 14b and Sylvan in Fig. 14e, they also follow the

Table 2: Total time needed by Adiar and conventional depth-first implementa-
tions to solve the 140 commonly solved instances. The average (geometric mean)
covers all instances that were commonly solved by all BDD packages and where
Adiar needed at least 1 s to solve. Ratios larger than 1.00 means Adiar is faster.

Time # Solved Avg. Ratio (1+s)

GoE QBF GoE QBF GoE QBF

Adiar 9655.7s 4499.4s 45 102 – –

BuDDy 4725.5s 3793.1s 40 100 0.30 0.25

CUDD 10892.8s 4591.9s 40 101 0.61 0.75

Lib-BDD 4365.7s 2687.3s 43 101 0.54 0.45

OxiDD 21223.9s 2379.6s 41 101 0.48 0.39

Sylvan 2925.4s 5841.4s 44 102 0.46 0.70
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Fig. 14: Relative performance of depth-first implementations compared to Adiar
with nested sweeping. Time-/Memouts are marked as crosses.



22 S. C. Sølvsten and J. van de Pol

same trend. This relative performance is similar to the results in [48–51]. That
is, nested sweeping allows Adiar to compute quantifications at no additional cost
to previous work.

LibBDD in Fig. 14c is the only BDD package consistently faster than Adiar
(ignoring its three MOs). Most likely, this is due to its lack of a shared unique
node table. This makes the expensive garbage collection steps obsolete; instead,
the memory is merely freed. Hence, either LibBDD can fit its BDD computations
into the internal memory (and it is faster than Adiar) or it aborts.

As is evident from Fig. 14e, Sylvan is comparatively good at some of the
larger GoE instances, thereby beating all other BDD packages in the total time
to solve the GoE benchmarks. As the BDD collapses to ⊤, one may expect this is
due to Sylvan skipping the second recursive calls to exists if the first recursion
resulted in ⊤. Yet, CUDD also includes this optimisation without exhibiting the
same behaviour. Further investigation is needed to identify how Sylvan excels
on these instances. Sylvan is also the only other BDD package able to solve all
QBF instances within the given time limit, in parts thanks to its small memory
footprint per BDD node [21]. Yet, Sylvan requires a total of 5.0 h to solve all
102 QBF instances whereas Adiar only needed 3.6 h, making Sylvan 1.4 slower
than Adiar.

6 Related Work

Many other implementations of BDDs also support quantification of multiple
variables. All these are based on a nested (inner) operation being accumulated
in an (outer) traversal of the input; the nested sweeping framework achieves the
same within the time-forward processing paradigm [4,18] of Adiar’s algorithms.

CAL: The CAL [46] BDD package (based on [7, 43]) is to the best of our
knowledge the only implementation of BDDs also designed to compute on BDDs
whose size exceed main memory. To do so, it uses breadth-first algorithms that
are resolved level by level. For each level it still follows the conventional approach:
a unique node table is used to manage BDD nodes while a polynomial running
time is guaranteed by use of a memoisation table. These per-level hash tables,
both in theory and in practice, put an upper bound on the maximum BDD width
that CAL can support with a certain amount of internal memory [6].

Its quantification operation also required additional ideas particular to the
design of CAL. Since it uses a single breadth-first queue for each level, each queue
contains requests for both the outer and the nested inner traversals. Hence, both
can be – and are – processed simultaneously [46]. Furthermore, it switches be-
tween breadth- and depth-first evaluation of subtrees to improve performance:
the outer traversal is depth-first for the BDD nodes with to be quantified vari-
ables and breadth-first otherwise. If the first subtree’s quantification makes com-
puting the other ones redundant, then all computation of the second is skipped.
These depth-first steps are also placed in the very same queues as the breadth-
first steps; doing so ensures no additional random access is introduced.
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By the nature of nested sweeping, our proposed algorithm is, unlike CAL,
not easily able to skip redundant computations. In Section 3.3 we investigate
multiple promising avenues to achieve similar pruning of redundant computation.
Furthermore, the lack of a unique node table in Adiar requires our algorithms
to retraverse and copy the subtrees that are unchanged. Even so, as evident in
Section 5, Adiar with nested sweeping outperforms CAL by up to several orders
of magnitude. Moreover, the I/O-efficient approach in [6, 49], and by extension
the ones in this work, are, unlike CAL, I/O efficient despite a BDD’s level is
wider than main memory.

Distribution Sweeping: In the context of computational geometry, distribu-
tion sweeping [25] is an I/O-efficient translations of internal memory sweepline
algorithms. Here, the recursion is turned on its head: the recursive but I/O in-
efficient data structure is replaced with an I/O-efficient list and the iterative
algorithm is instead turned into a recursive one. Specifically, all the points in
the plane are sorted on the x-axis and distributed into M/B vertical strips (see
Section 2.1 on the I/O-model). After these strips have been solved recursively,
an M/B-way merge procedure both merges and prunes all strips into one while
simultaneously recreating a vertical sweepline moving across all strips [12, 25].

In our case of translating the exists algorithm (see Fig. 2), we also intend
to move the recursion out of a data structure, namely out of the BDD. Unlike
for distribution sweeping, we do not intend to divide-and-conquer the input but
instead recurse through the dependencies of the algorithm’s recursion, e.g. be-
tween the independent calls to exists and the nested or operation that depends
on their result. Independent recursions are resolved simultaneously with regular
time-forward processing sweeps as in [49]. Dependencies are handled by moving
requests from the priority queue of one time-forward processing sweep to the
priority queue of another. When all dependencies have been moved, the current
sweep is paused to then start a nested sweep – the results of which are in turn
parsed to its dependencies.

7 Conclusions and Future Work

Each sweep in [49] is independent of the others. Using only this approach, one can
only quantify a single variable a time but not multiple at once. In this work, we
enable multi-variable quantification with the nested sweeping framework. Here,
multiple sweeps work together: each sweep forwards information within priority
queues to itself, its parent, or its child in a recursion stack.

In practice, nested sweeping has improved the total time that Adiar needs
to solve our quantification benchmarks by 21%. On average, it improves each
instance’s running time by a factor of 1.7. This allows us to extend the results
in [48–51] to Adiar’s quantification operations: ignoring small instances, Adiar
is at most 4 times slower than conventional depth-first implementations. Adiar
even outperforms depth-first implementations as they get closer to the limits of
internal memory. As Adiar’s nested sweeping algorithms are implemented on-top
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of the I/O-efficient data structures that were also used in [48–51], its performance
is unaffected by a limited internal memory [49]. For example, whereas CUDD [52]
could solve 141 out of our 147 benchmark instances in 5.6 h, Adiar needed only
4.6 h to do the same; Adiar could also solve the remaining 6 instances. On
average, Adiar is only 1.3 times slower than CUDD for the instances that CUDD
could solve.

Adiar is also faster, often by one or more orders of magnitude, than the only
other existing external memory BDD package, CAL [46].

The nested sweeping framework has already been generalised to pave the
way for the implementation of other multi-recursive BDD operations. We intend
to use it for the relational product and functional composition which are both
used in model checking such as [28]; in particular, the I/O-efficient relational
product still requires optimisations for its variable relabelling and its combined
and-exists. Furthermore, we hope to also use nested sweeping as the foundation
for novel I/O-efficient variable reordering procedures. Finally, nested sweeping
opens up the possiblity to create an I/O-efficient implementation of other types
of decision diagrams. For example, both Quantum Multiple-valued Decision Dia-
grams [38] and Polymial Boolean Rings [11] require nested sweeps to implement
their multiplication operations.
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furcation analysis of parametrised Boolean networks. In: Computer Aided Verifi-
cation. Lecture Notes in Computer Science, vol. 12224, pp. 569 – 581. Springer
(2020). https://doi.org/10.1007/978-3-030-53288-8 28

10. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD pack-
age. In: 27th Design Automation Conference (DAC). pp. 40–45. Association for
Computing Machinery (1990). https://doi.org/10.1109/DAC.1990.114826

11. Brickenstein, M., Dreyer, A.: PolyBoRi: A framework for Gröbner-basis computa-
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